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Methods of Equivariant Topology
in Two Nice Discrete Geometry Problems
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Abstract

We present the basic concepts of equivariant index theory, numerical
and cohomological. We then show how these indices can be used to
give solutions to some special cases of Knaster’s problem, or to the
prime case of Nandakumar & Ramana Rao problem.
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1 Introduction

Equivariant topology stud-
ies topological spaces with
some kind of symmetry re-
flected in the action of a
group, together with map-
pings among these spaces
that “respect" such actions,
called equivariant mappings.
The development of equiv-
ariant topology was fol-
lowed by its many appli-
cations in discrete geome-
try and combinatorics. Our
aim is to illustrate how to transform a problem from
discrete geometry into a problem in equivariant topol-
ogy (about the nonexistence of certain maps) and then
solve it. Section 2 contains the basic definitions and
describes the general approach for reducing a given ge-
ometric problem to the nonexistence of an equivariant
mapping. In order to prove that such a map doesn’t
exist, we need some measure of complexity of a space
with group action. Here we introduce two such mea-
sures: the numerical index function in section 3, and
the cohomological index in section 5. The main objec-
tive of our paper is to offer applications of these in-
dices. Section 4 discusses some cases of the famous
Knaster’s problem. It will be shown that for every con-
tinuous map f : Sn−1 → R, and for every prime p,
2 < p < n, there exists a regular p-gon on a great cir-
cle of Sn−1, whose vertices have the same image under

f . The last section is about the Nandakumar & Ra-
mana Rao’s conjecture from 2006, which asks whether
for a convex polygon and n ∈ N, there exists some
partition of the polygon into n pieces with the same
area and the same perimeter. For prime n we present
a proof that uses the cohomological index. Generally,
we will skip technical details and focus on geometrical
ideas and creative constructions. We hope that this in-
troduction will encourage the reader to further develop
knowledge in equivariant topology, and make it part of
his/her mathematical tool kit.

2 Topological Group Actions

2.1 Definitions and terminology
Our basic concept, the action of a group, is defined
for topological groups, i.e. groups that are Hausdorff
topological spaces with continuous group and inverse
operations. We will work with finite (discrete) groups
which are obviously topological groups.

Let X be a topological space and G a topological
group. A G-action of G on X is a continuous map
ϕ : G×X → X such that the restrictions ϕg = ϕ(g,−)
for g ∈ G, are self-homeomorphisms of X satisfying:

1) ϕe = 1X , for all x ∈ X,
2) ϕg1 ◦ ϕg2 = ϕg1g2 , for all g1, g2 ∈ G, x ∈ X.

The pair (X,ϕ) is called a G-space. The (left) action
of g on x; ϕ(g, x) = ϕg(x), is denoted by gx.

If X is a simplicial (or cell) complex, and if all map-
pings ϕg, for g ∈ G, are simplicial (resp. cell) mappings,
then X is called a simplicial (or cell) G-complex.

A G-action on X is free (and X is a free G-space) if
for every g ∈ G, g 6= e, the homeomorphism ϕg has no
fixed points.

For every x ∈ X, the set {ϕg(x) | g ∈ G} is called
the orbit of x. When the action of a finite group is free,
every orbit has the same cardinality as the group.
Definition 2.1. Let (X,ϕ) and (Y, ψ) be twoG-spaces.
A continuous mapping f : X → Y is G-equivariant if
f ◦ϕg = ψg ◦ f , for all g ∈ G, i.e. if f(g · x) = g · f(x),
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for ∀g ∈ G, ∀x ∈ X. If G-equivariant mapping exists,
we write X G−→ Y .

Equivariant topology is the study of G-spaces and
G-equivariant maps between them.

2.2 Relevant Examples
We recall a few relevant but basic group actions.
• The first important group action is the antipodal

action of Z2 = {0, 1} on the sphere Sn, where 0 acts
as the identity, while 1 acts as the antipodal mapping
x 7→ −x. This action is free.

The famous Borsuk-Ulam theorem says that for ev-
ery continuous mapping f : Sn → Rn there exists a
point x ∈ Sn such that f(x) = f(−x). It is well-known
(see [21], 2.1.1) that this statement is equivalent to the
following one: There is no antipodal continuous map-
ping g : Sn → Sn−1, i.e. the mapping which satisfies
g(−x) = −g(x), for all x ∈ Sn. In the language of
equivariant topology, this is stated as follows:
There is no Z2-equivariant mapping from Sn to Sn−1.

This example illustrates how it is possible to phrase
important results in topology in terms of equivariant
topology. More on this in §2.3.
• The actions of other cyclic groups Zn are also very

important. A Zn-action is completely determined by
the homeomorphism ϕ1, since ϕk = ϕ1 ◦ · · · ◦ ϕ1 = ϕk1,
for all k. It is easily seen that for prime p the action of
group Zp is free if and only if the action of generator
ϕ1 is free ([21], 6.1.3).
• There is a free action of the group Zn on the cir-

cle S1, where the generator acts as the rotation by 2π
n .

Also, the group SO(2) of all rotations around the origin
acts freely on S1, and generally, the special orthogonal
group SO(n) acts on Sn−1, but this action is not free
for n > 2.
• If X and Y are two G-spaces, we have a natural

diagonal action on the product X × Y , given by: g ·
(x, y) := (g · x, g · y). Also, G acts on the geometrical
join X ∗ Y in a similar way: g · (tx ⊕ (1 − t)y) :=
t(g · x)⊕ (1− t)(g · y), for all t ∈ [0, 1], x ∈ X, y ∈ Y .
(Remind that X ∗ Y can be seen as the union of all
segments connecting a point of X to a point of Y , see
[21],4.2.4.)
• For every topological space X, there is an action of

symmetric group Σn on the product Xn given by per-
muting the coordinates. Precisely, for a permutation
π ∈ Σn, ϕπ(x1, . . . , xn) := (xπ(1), . . . , xπ(n)). This Σn-
action is not free, but it is free on the following very im-
portant subspace of Xn, called the configuration space
of n pairwise distinct points in X;

F (X,n)
:= {(x1, x2, . . . , xn) ∈ Xn |, xi 6= xjfor all i 6= j}.

The cyclic group Zn can be viewed as a subgroup of Σn

generated by the permutation

π(1, 2, . . . , n) = (2, 3, . . . , n, 1)

(i.e generated by the cycle (1, 2, . . . , n)), and so Zn acts
on both Xn and F (X,n).

2.3 Configuration Space - Test Map Method
At the foundation of our subject lies the question: how
to transform a problem from discrete geometry or com-
binatorics into a problem in equivariant topology? One
systematic approach which is both useful and powerful
is the so called configuration space - test map method
(see [28]). We briefly describe how this method works.

Suppose we wish to show that there exists some con-
figuration of points in the plane, or a set of vertices in a
graph, that satisfies a certain special property. That de-
sired configuration is called the solution for the sought
property/problem. To find it, one can proceed in steps:
• At first, construct a space X which is encoding

all possible candidates for the solution. This space is
called the configuration space.
• Construct a continuous mapping fromX into some

carefully chosen space Y . This map f : X → Y should
tell us whether some configuration is the solution or
not, in the following manner: x ∈ X is a solution if and
only if f(x) ∈ Z, where Z ⊂ Y (some ”discriminant"
subspace). The space Y is called the test space, while
f is called the test map.
• Failure to have solutions to the initial problem

means that f maps X into Y \Z.
• In the presence of G-symmetry, the test map can

be enriched to a G-equivariant map f : X G−→ Y or
f : X G−→ Y \Z, with G acting on all spaces in sight.
• If we can prove by methods of equivariant topology

that there is no equivariant map f : X G−→ Y \Z, then
this would mean that f takes some value in Z and a
solution exists.

There are several standard techniques for proving
the nonexistence of equivariant mappings, including some
index theories and the equivariant obstruction theory.
Here, we will describe two kinds of equivariant indexes:
the numerical indG and the cohomological IndG.

3 Numerical G-index

In order to define our first measure of G-complexity,
the numerical index function, we need one special class
of G-spaces.
Definition 3.1. Let G be a finite group, |G| > 1 and
n ∈ N0. A G-space X is an EnG-space if it satisfies the
following conditions:

1◦ X is a free G-space,
2◦ X is a finite simplicial (or cell) G-complex such

that dimX = n,
3◦ X is (n− 1)-connected.
A standard example of EnG-space is the (n + 1)-

fold join G∗(n+1), where G is considered as discrete 0-
dimensional complex. For n = 1, G∗2 is the complete
bipartite graph G ∗G. Inductively we get that G∗(n+1)

is an n-dimensional complex. A free action of a group
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G on itself is given by group multiplication ϕg(x) := gx,
and it naturally induces a G-action on the join G∗(n+1),
which is also free. Also, since the join of a k-connected
complex with an l-connected complex is (k + l + 1)-
connected ([21], 4.4.3), we inductively get that G∗(n+1)

is (n−1)-connected, so it is an EnG-space. For example,
an EnZ2-space is the sphere Sn with antipodal action.
This is in fact clear since Z2 is S0 topologically, while
the (n+ 1)-fold join S0 ∗ · · · ∗ S0 is Sn.

Now we will state two important results without
proofs. The proofs use standard topological techniques
that are beyond our topic. They can be found in [21]
(section 6) which provides an elegant exposition of topo-
logical methods.

If K is a finite simplicial complex, we will write ‖K‖
for its realization.
Theorem 3.2. Let K be a free finite simplicial (or
cell) G-complex, dimK 6 n, and let X be an (n − 1)-
connected G-space. Then ||K|| G−→ X.
In particular, X G−→ Y holds for every two EnG-spaces
X and Y .
Theorem 3.3 (Borsuk-Ulam theorem for G-spaces).
There is no G-equivariant mapping from an EnG-space
to an En−1G-space.

Notice that for G = Z2 this is the standard Borsuk-
Ulam theorem.

We can now define the index function.
Definition 3.4. Let X be a G-space. The numerical
index of X is defined as

indG(X) := min{n ∈ N0 | X
G−→ EnG}.

We can choose any EnG-space here because from
Theorem 3.2 EnG-spaces map G-equivariantly to each
other. The G-index can be a natural number or∞. For
example, the disc with antipodal Z2-action has infinite
Z2-index, since any Z2-equivariant mapping to EnZ2 =
Sn should satisfy f(0) = −f(0) ∈ Sn, which is not
possible. Similarly, all non-free G-spaces have infinite
G-index.

Here are the most important properties of indG(X),
which show that it is indeed a measure of G-complexity.
Theorem 3.5. Let G be a finite nontrivial group.

1) (Monotonicity) If X G−→ Y , then indG(X) 6
indG(Y ).

2) indG(EnG) = n.
3) indG(X ∗ Y ) 6 indG(X) + indG(Y ) + 1.
4) If X is (n− 1)-connected, then indG(X) > n.
5) If K is a free simplicial (cell) G-complex of di-

mension n, then indG(K) 6 n.
Proof. The first property follows from the definition di-
rectly. The second is a direct consequence of Theorem
3.3 (indG(EnG) 6 n because the identity map is G-
equivariant). For 3), we take EnG = G∗(n+1), and let
indG(X) = n and indG(Y ) = m. Then there exist f1 :
X

G−→ G∗(n+1) and f2 : Y G−→ G∗(m+1). Hence we have

f1 ∗ f2 : X ∗ Y G−→ G∗(n+1) ∗ G∗(m+1) ∼= G∗(n+m+2) =
En+m+1G, so indG(X ∗Y ) 6 n+m+1. Also, 4) and 5)
follow directly from Theorem 3.2 and property 2): we
have EnG G−→ X in 4), and ‖K‖ G−→ EnG in 5).

Finally, we can prove one of the most useful theo-
rems of equivariant topology.
Theorem 3.6 (Dold’s theorem). Let G be a finite non-
trivial group. Let X be an n-connected G-space, and
let Y be a free simplicial (or cell) G-complex such that
dim Y 6 n. Then there is no G-equivariant mapping
from X to Y .
Proof. The property 4) implies indG(X) > n+ 1, while
5) implies indG(Y ) 6 n. Then from 1) there cannot
exist a G-equivariant mapping from X to Y .

4 Application to Knaster’s Problem

Consider some finite set of points A = {A1, A2, . . . , Ak}
on the sphere Sn−1, and let us fix some dimension
m ∈ N. Knaster’s problem asks the following. Given a
continuous mapping f : Sn−1 → Rm, does there exist a
rotation ρ ∈ SO(n), such that f(ρ(A1)) = f(ρ(A2)) =
· · · = f(ρ(Ak))? If the answer is “yes" for all such
mappings f , set A is called the solution of Knaster’s
problem for n and m.

In [17], Knaster originally asked this question for
k = n−m+1, and he asked whether every configuration
of n − m + 1 points is a solution or not. The answer
to his question is negative, and counterexamples were
found by Makeev in [19] (see also [2] and [7]). However,
the problem of finding all solutions for given k, n and
m is very interesting, and open in many cases.

It is easily observed that if A = {A1, A2, . . . , Ak}
contains k = n − m + 2 linearly independent points;
meaning the corresponding vectors OAi are indepen-
dent, then it is not a solution. Indeed, in that case
pointsA1, . . . , Ak−1 determine (n−m)-dimensional affine
subspace Π ⊂ Rn, Ak /∈ Π. The orthogonal projection
to the orthogonal complement f : Sn−1 → Π⊥ ∼= Rm is
a function for which desired rotation ρ doesn’t exist.

The Borsuk-Ulam theorem is a special case of the
affirmative Knaster problem. It corresponds to the case
m = n − 1 and A = {e,−e} is a set of two antipodal
points. This case was generalized by Hopf [13] for any
two points A,B ∈ Sn−1.

Even in the first interesting case of spaces S2 and R,
all Knaster’s solutions are not known. Kakutani [15]
proved that the vertices A1, A2, A3 of an orthonormal
frame are solution, and in [10] this was generalized to
the case of every 3-element subset of S2. On the other
hand, it is known that every five points on S2 are not
solution, as well as every four non-planar points (for di-
mensional reasons). The remaining cases of four planar
points is still open, with some partial results (for exam-
ple the set {A,−A,B,−B} is solution for all A,B ∈ S2

; see [18]).
For m = 1, analogously to the Kakutani case, A =

{e1, e2, . . . , en} ⊂ Sn−1 being the standard orthonormal
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basis is a solution ([27]); A ⊂ Sn−1 being the set of
vertices of any regular (n−1)-simplex ([6]) as well, etc.

Generally, there are many
nice situations whereA can be
a solution to Knaster’s prob-
lem and to which methods of
equivariant topology can be
applied. We discuss two ex-
amples from Makeev’s papers
[19] and [20]. In so doing, we
give a detailed exposition of
the configuration space - test
map method.
Theorem 4.1. Let p be an
odd prime, n ∈ N, p < n.
Let A1, A2, . . . , Ap be the ver-
tices of a regular polygon with
p sides, on a great circle of
sphere Sn−1. Then for every continuous mapping f :
Sn−1 → R there exists a rotation ρ ∈ SO(n) such that
f(ρ(A1)) = f(ρ(A2)) = . . . = f(ρ(Ap)).

An interesting reformulation is that for every con-
tinuous map f : Sn−1 → R, and an odd prime p < n,
there exists a regular p-gon on a great circle of Sn−1

such that all its vertices have the same image under f .
Proof. Each regular polygon with p sides and vertices
X1, . . . , Xp lying on a great circle of the sphere Sn−1

defines in some cyclic ordering a p-tuple (X1, . . . , Xp)
of points of Sn−1. Each such tuple is uniquely deter-
mined by the pair (X1, X2). Conversely, any pair of
points (X1, X2) that make an angle of 2π

p determine
points X3, . . . , Xp uniquely so that (X1, X2, . . . , Xp) is
an ordered vertex set of a regular polygon. Then we can
identify the configuration space of all p-tuples (X1, . . . , Xp)
of points of Sn−1, which form an ordered vertex set of
some regular polygon with p vertices on a great circle,
with V2(Rn), the Stiefel variety of orthonormal 2-frames
in Rn.

Suppose to the contrary that a given configuration
(A1, A2, . . . , Ap), thought of as an element of V2(Rn),
is not a solution to Knaster’s problem. Then there is
a continuous map f : Sn−1 → R for which the desired
rotation doesn’t exist. We can define a test map F :
V2(Rn)→ Rp,

F (X1, X2, . . . , Xp) := (f(X1), f(X2), . . . , f(Xp)).

By assumption, F (V2(Rn)) has empty intersection with
the diagonal subspace ∆ in Rp, for otherwise there
would be a regular polygon with p sides and vertices
having all the same image under f . But every such
polygon can be obtained as some rotation of our poly-
gon with vertex set {A1, A2, . . . , Ap}, which gives a
contradiction to the assumption. So, we can consider
the same mapping F with smaller codomain, i.e. F :
V2(Rn)→ Rp\∆.

Now consider some appropriate group actions. The
group Zp acts freely on both spaces. It cyclically per-
mutes vectors of V2(Rn); i.e after our identification of

the configuration space with V2(Rn), the generator of
Zp acts according to

gZp(X1, . . . , Xp) := (X2, X3, . . . , Xp, X1)

This action is obviously free. The action on Rp\∆ is
also cyclic permutation of coordinates. Note that this
action is also free, and that it wouldn’t be free if p was
not a prime number. Also, it is obvious that F is a Zp-
equivariant mapping. We would like to prove that such
an equivariant mapping cannot exist. In order to ap-
ply Dold’s theorem, we shall equivariantly modify the
codomain to a CW-complex. At first, take the orthog-
onal projection π : Rp\∆ → ∆⊥\{0}, and then radial
projection r from ∆⊥\{0} onto the unit sphere in ∆⊥,
which is Sp−2. Spaces ∆⊥\{0} and Sp−2 have inherited
Zp-actions from Rp\∆, which are both well-defined and
free. Also, π and r are Zp-equivariant deformations. So,
we have the following Zp-equivariant composition:

φ = r ◦ π ◦ F : V2(Rn) Zp−→ Sp−2.

The Stiefel manifold Vk(Rn) is an (n−k−1)-connected
space ([12], p. 382), so our domain is (n−3)-connected,
while the dimension of the codomain is p− 2 < n− 2.
Since the action on this codomain is free, by Dold’s
theorem (Theorem 3.6) we obtain a contradiction, and
this proves our claim.
Theorem 4.2. Let p be an odd prime and n ∈ N, such
that 2p < n+ 1. Let A1, A2, . . . , Ap be the vertices of a
regular (p− 1)-simplex, whose center is not at the ori-
gin. Then for every continuous mapping f : Sn−1 → R
there exists a rotation ρ ∈ SO(n) such that f(ρ(A1)) =
f(ρ(A2)) = . . . = f(ρ(Ap)).
Proof. The configuration space of all p-tuples
(X1, . . . , Xp) which form a regular (p− 1)-simplex con-
gruent to the simplex (A1, . . . , Ap), is the Stiefel mani-
fold Vp(Rn). (This is obvious if A1, . . . , Ap are the ver-
tices of an orthonormal frame. Otherwise, every such
simplex (X1, . . . , Xp) has its unique corresponding sim-
plex (X ′1, . . . , X ′p), formed by vertices of an orthonormal
frame, and whose center is collinear with the origin and
the center of (X1, . . . , Xp).)

Now suppose to the contrary that there is a contin-
uous mapping f for which there is no desired rotation,
and follow the construction of the previous proof. Since
the vertex set {X1, . . . , Xp} of every considered (p−1)-
simplex is ρ({A1, . . . , Ap}), for some ρ ∈ SO(n), then
X1, . . . , Xp never have the same image under f . There-
fore the following mapping is well defined:

F : Vp(Rn)→ Rp\∆,
F (X1, . . . , Xp) := (f(X1), . . . , f(Xp)).

The group Zp acts again freely on the domain and
codomain by cyclically permuting the vectors and co-
ordinates, respectively. Also, F is an Zp-equivariant
mapping. As in the previous proof, the composition
of the orthogonal projection and the radial projection
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is a Zp-equivariant retraction q : Rp\∆ → Sp−2. The
composition q ◦ F : Vp(Rn)→ Sp−2 is a Zp-equivariant
mapping. Since Vp(Rn) is (n − p − 1)-connected, and
n−p−1 > p−2 = dimSp−2, we obtain a contradiction
thanks to Dold’s theorem.

Let us illus-
trate some results
on the Knaster’s
problem with an
attractive appli-
cation. There is
a natural ques-
tion whether ev-
ery convex body
can be inscribed
into a cube. By
convex body in Rd
we consider every
compact, convex
set in Rd, with nonempty interior. We say that a body
is inscribed into a cube if all faces of the cube belong
to supporting planes of the body.
Theorem 4.3 (Kakutani, [15]). Every convex body K
in R3 can be inscribed into a cube.
Proof. Consider the function f : S2 → R, where for
each vector v ∈ S2, f(v) is defined as the width of K in
the direction of vector v, i.e. the distance between the
supporting planes, orthogonal to the vector v. Since K
is convex, f is continuous function. Now take an ar-
bitrary orthonormal frame (e1, e2, e3) on S2. We know
that {e1, e2, e3} is the solution of Knaster’s problem for
S2 and R, so there exists a rotation ρ ∈ SO(3), such
that f(ρ(e1)) = f(ρ(e2)) = f(ρ(e3)). Put ẽi = ρ(ei),
for i = 1, 2, 3. Then {ẽ1, ẽ2, ẽ3} is a new orthonormal
frame whose vectors are parallel to directions in which
our body has the same width. This means that along
those directions we can put a cube which is circum-
scribed around the body.

By using the same idea of width function f : Sn−1 →
R, now with supporting hyperplanes, and with the men-
tioned result that the vertices of an orthonormal basis
are Knaster’s solution for Sn−1 and R, we have the gen-
eral result: Every convex body in Rn can be inscribed
into an n-dimensional cube.

5 Cohomological Fadell-Husseini Index

5.1 Definition and basic properties
The (ideal-valued) cohomological index was introduced
by E. Fadell and S. Husseini [9] in relation to criti-
cal point theory. In its general form, it is defined for
compact lie groups G, paracompact G-pairs (X,A) and
generalized multiplicative cohomology theories. Below
we restrict ourselves to finite groups G and to singu-
lar cohomology. To define the cohomological index in
this context, we need the concept of universal princi-
pal G-bundle EG→ BG (see [26], I.8). The space EG

is a “direct limit" of spaces EnG used in the definition
of indG. It is a contractible free cell G-complex which
can be obtained by taking the infinite join: EG :=
G∗G∗G∗· · · , where G-action is the standard action on
a join. The orbit space BG := EG/G is called the clas-
sifying space of the group G. For example, EZ2 = S∞,
and BZ2 = RP∞; the infinite real projective space. A
detailed theory of G-bundles in given in [26].

Now, let X be a G-space and K a commutative ring
with unit. A constant map c : X → ∗ is obviously
G-equivariant. Taking the product with EG gives the
second projection p : X × EG → EG, which is also
G-equivariant (on domain we consider the diagonal ac-
tion). Therefore, the induced map (X × EG)/G →
EG/G = BG of orbit spaces is well-defined. A stan-
dard notation isXG := (X×EG)/G. Since cohomology
is contravariant, this last mapping induces a homomor-
phism

p∗ : H∗(BG;K)→ H∗(XG;K).
Definition 5.1. The Fadell-Husseini cohomological in-
dex of a G-space X, with respect to coefficients K, is
defined as the kernel ideal:

IndG(X;K) := ker(p∗ : H∗(BG;K)→ H∗(XG;K)).
We will usually write just IndG(X), and keep in mind
the ring of coefficients K.

When X is a free G-space, instead of XG we can
work with X/G. Indeed, both spaces are homotopy
equivalent and this can be seen as follows. The first
projection π : X × EG → X is G-equivariant so it
induces a map of orbit spaces π′ : XG → X/G. When
the action on X is free, this is a bundle projection with
fiber EG, which is a contractible space. This implies
that π′ is a weak homotopy equivalence and thus, for
spaces of the homotopy type of a CW-complex, this
map is a homotopy equivalence. Consequently, for free
G-action we can write

IndG(X;K) = ker(p∗ : H∗(BG;K)→ H∗(X/G;K)).

The main property of the cohomological index, which
gives a necessary condition for the existence of G-map,
is given in the following proposition.

Proposition 5.2 (Monotonicity). If X G−→ Y , then
IndG(X) ⊃ IndG(Y ).

Proof. Suppose that there exists a map f : X G−→ Y .
The proof follows from a sequence of commutative dia-
grams, see below. The first diagram with constant maps
commutes. When we product with EG, we get a com-
mutative diagram of G-spaces and G-mappings. This
induces the third commutative diagram of orbit spaces
after passing to the quotients. Finally, we apply coho-
mology and revert arrows (coefficients are in K). We
obtain that f∗ ◦ p∗Y = p∗X , and thus ker p∗Y ⊂ ker p∗X .

X YG //X

∗
��::::: Y

∗
�������

X × EG Y × EGG //X × EG

EG
��????? Y × EG

EG
�������
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XG YG//XG

BG
��:::: YG

BG
������

H∗(YG)H∗(XG)f
∗
oo

H∗(BG)

H∗(YG)
p∗

Y

BB����
H∗(BG)

H∗(XG)
p∗

X

\\::::

Besides monotonicity, the following three properties
are usually called the axioms of cohomological index.
We state them for completeness but we omit the proofs.
• (Additivity) If G-spaces X1 and X2 are open in

X1 ∪X2, or they are CW-subspaces of a CW-complex
X1 ∪X2, then IndG(X1) · IndG(X2) ⊂ IndG(X1 ∪X2).
• (Continuity) If A ⊂ X is a closed G-invariant sub-

space of X, then for some open G-invariant U , U ⊃ A,
holds: IndG(U) = IndG(A).
• (The Index theorem) Let f : X → Y be a G-

map, B is a closed G-invariant subspace of Y , and A =
f−1(B) ⊂ X. Then: IndG(A) · IndG(Y \B) ⊂ IndG(X).

There are also formulas for computing the cohomo-
logical indices of products and joins. For a detailed
exposition of this topic see [9] and [29].

5.2 Examples of cohomological index
The cohomological index gives better classification of
G-spaces than the numerical index. Cohomology rings
of most classifying spaces of interest have been com-
puted, and their cohomological indices determined. This
turns out to be very useful in applications. The follow-
ing important theorem is proved in [26], III(2.5).
Theorem 5.3. For a prime number p 6= 2,

H∗(BZp;Zp) ∼= Zp[t]⊗Zp Λ[s],

where deg t = 2, deg s = 1, and Λ is the exterior algebra
over Zp (s2 = 0). Hence H2i is generated by ti and
H2i+1 is generated by tis.

For p = 2, H∗(BZ2;Z2) ∼= Z2[t], where deg t = 1.
Related to this theorem, there are several well-known

indices.
• The index of antipodal action on sphere Sn with

respect to coefficients Z2 is an ideal generated by tn+1,
i.e. IndZ2(Sn;Z2) = 〈tn+1〉 ⊂ Z2[t].

Also, for prime p 6= 2, the sphere S2n−1 ⊂ Cn is a
Zp-space if Zp is interpreted as a subgroup of S1 ⊂ C,
and S1 acts on S2n−1 by complex multiplication. In
this case IndZp(S2n−1;Zp) = 〈tn〉 ⊂ Zp[t]⊗Zp Λ[s].
• The index which we need in the next chapter is

the Zp-index of the configuration space of p points in Rd
(with the aforementioned cyclic action). It is computed
in [4], via application of spectral sequences and a strong
machinery. Here is the theorem.
Theorem 5.4 ([4] 6.2). Let p be a prime and d > 1.
Then for K = Zp holds

IndZp(F (Rd, p)) = H>(d−1)(p−1)+1(BZp;Zp)

=
{
〈t(d−1)(p−1)+1〉, p = 2,
〈st

(d−1)(p−1)
2 , t

(d−1)(p−1)
2 +1〉, p > 2.

6 The Nandakumar & Ramana Rao Conjecture

In 2006, Nandakumar and Ramana Rao [22] asked a
very simple, but interesting question: given a positive
integer n, can any convex polygon be partitioned into
n convex pieces such that all pieces have the same area
and the same perimeter? Such partition is called the
convex fair partition. The pieces in the partition could
have different shapes, of course. They proposed the
following conjecture.
Conjecture 6.1 (Nandakumar & Ramana Rao). For a
given planar convex polygonK and any natural number
n > 1 there exists a partition of the plane into n convex
pieces C1, . . . , Cn such that

area(C1 ∩K) = · · · = area(Cn ∩K) and

perimeter(C1 ∩K) = · · · = perimeter(Cn ∩K).
For example, for any rectangle the conjecture is true.

Also, if n is a perfect square, there is a fair partition of
every triangle T into n congruent small triangles. But
what about an arbitrary polygon? For n = 2 Nandaku-
mar and Ramana Rao [24] gave the following elemen-
tary proof. For every point A on the boundary ∂K,
there exists a unique point f(A) ∈ ∂K, such that line
Af(A) divides K into two pieces of equal area. We
move point A continuously clockwise along ∂K, until it
reaches the point f(A). The function Pr(X) − Pl(X),
where Pr(X)(Pl(X)) is the perimeter of the piece to the
right(left) of line Xf(X) (direction is important) has
changed sign during this movement, so from interme-
diate value theorem there is a point C ∈ ∂K, between
A and f(A), such that line Cf(C) divides K into two
pieces of equal area and equal perimeter.

Nandakumar and Ramana Rao [23] also gave ele-
mentary arguments for the case n = 2k. Afterwards,
many experts in equivariant topology worked on this
problem. The case n = 3 was settled in [3]. Also, an
analogous question was asked for higher dimensions. In
[14], the 3-dimensional case is presented as the spicy-
chicken problem: is it possible to cut a chicken fil-
let, with surface marinated in a sauce, such that each
among n people gets the same amount of chicken and
the same amount of sauce? In fact, we want a partition
of 3-dimensional convex body into n pieces of equal vol-
ume and equal surface area. Naturally, one can think of
adding an extra condition in 3-dimensions, beside the
volume and the surface area. To generalize Conjecture
6.1 formally, we need several notions. Let Conv(Rd)
denotes the metric space of all d-dimensional convex
bodies with the Hausdorff metric. Instead of the area
or volume, generally we can speak about nice measures.

A nice measure µ in Rd is an absolutely continuous
probability measure (given by a nonnegative Lebesgue
integrable density function with convex support) such
that the measure of every hyperplane is zero.

A convex partition of Rd is a partition of Rd where all
the parts are closed convex sets with pairwise disjoint
interiors.
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Conjecture 6.2 (Generalized N&RR). Given a convex
bodyK ⊂ Rd (d > 2), a nice measure µ on Rd, any nat-
ural number n > 1 and any d− 1 continuous functions
ϕ1, . . . , ϕd−1 : Conv(Rd) → R, there exists a partition
of Rd into n convex pieces C1, . . . , Cn such that

µ(C1 ∩K) = · · · = µ(Cn ∩K) and

ϕi(C1∩K) = · · · = ϕi(Cn∩K), for all i ∈ {1, . . . , d−1}.
Notice that in R2 this generalizes the first conjec-

ture for convex figures instead of polygons. The next
steps in solving both the original and the generalized
N&RR conjecture were done by Karasev [16], Hubard
& Aronov [14] and Blagojević & Ziegler in [5]. All of
them observed that both conjectures are true if there
is no Σn-equivariant mapping F (Rd, n)→ S(W⊕(d−1)

n ).
Here Wn is the Σn-representation

{(x1, . . . , xn) ∈ Rn | x1 + · · ·+ xn = 0},

where the Σn-action is given by permuting coordinates.
Till now, it has been verified that both conjectures hold
for n = pk, where p is a prime number.

Our aim is to present the proofs for both conjec-
tures in the case n = p, for prime p. There are two
steps. First, we establish the claim that the conjectures
are true if there is no Σn-equivariant map F (Rd, n) →
S(W⊕(d−1)

n ). The second step is to prove this claim for
prime n. Before pursuing this, we analyze next one par-
ticular convex partition of Rd that we need, and which
arises from every given finite set of points in Rd.

6.1 Voronoi diagrams
Let S be an ordered n-tuple of distinct points in Rd,
S = (x1, x2, . . . , xn) ∈ F (Rd, n) ⊂ (Rd)n. Points in
S are called sites. For every site xi, we define the set
Ci = {x ∈ Rd | ‖x− xi‖ 6 ‖x− xj‖ for all 1 6 j 6 n},
which is called Voronoi region. It contains all points x
for which distance to xi is minimal among all distances
to the sites.

Each Ci is the intersection of half-spaces H+
i,j = {x ∈

Rd | ‖x−xi‖ 6 ‖x−xj‖}, so Ci must be a convex poly-
hedron (for d = 2 a convex polygon). Each two Voronoi
regions intersect at most along their faces, therefore we
obtain a convex partition of Rd called Voronoi diagram:
V (S) = (C1, C2, . . . , Cn).

Now, let us take sites S = (x1, . . . , xn) ∈ F (Rd, n)
and a weight vector w = (w1, . . . , wn) ∈ Rn. We define
power functions hi : Rd → R, hi(x) = ‖x−xi‖2−wi, i =

1, . . . , n. Then we have power regions which minimize
the power distance:

Ci = {x ∈ Rd | hi(x) 6 hj(x) for all 1 6 j 6 n},
i = 1, . . . , n.

The set V (S,w) = (C1, C2, . . . , Cn) is called generalized
Voronoi diagram or power diagram. Obviously, for w =
(0, 0, . . . , 0), it is the standard Voronoi diagram with
sites S. Again, every region Ci is a convex polyhedron,
with at most n− 1 facets because it is the intersection
of halfspaces H+

i,j = {x ∈ Rd | hi(x) 6 hj(x)}, bounded
by hyperplanes: Hi,j = {x ∈ Rd | hi(x) = hj(x)}, i.e.
equivalently

Hi,j = {x ∈ Rd | 2〈x, xi−xj〉 = ‖xi‖2−‖xj‖2+wj−wi}.

So, V (S,w) is a convex partition of Rd. In contrast to
standard case, some power regions may be empty. But
visually, it is not easy to distinguish between standard
and generalized Voronoi diagrams. A discussion of this
construction in the plane is given in [8].

Notice that every dividing hyperplane Hi,j is orthog-
onal to xi − xj , and that its position depends only
on wj − wi (for fixed S). So, if we add the same
amount to every weight, diagram doesn’t change. In
other words, for all α, V (S,w) = V (S,w + αe), where
e = (1, 1, . . . , 1). Hence for every power diagram we
can choose w such that w1 + · · ·+wn = 0, i.e. w ∈ Wn.
Even more, if V (S,w) = V (S,w′), then w′ has to be
this kind of translate of vector w ([25],[14]).

For us, the most important property of a power di-
agram is that it can equipartition nice measures. It
has been proven that given a nice measure µ and the
set of sites S, there is a weight vector w such that a
power diagram V (S,w) satisfies µ(Ci) = µ(Rd)

n for all
i = 1, . . . , n ([1]). This w is unique up to translations
by the diagonal e, so it is unique in Wn. Furthermore,
when points in S move continuously (and remain differ-
ent) then the weight vector w also moves continuously
through Wn ([1], [14]). So, the function which to each
S = (x1, x2, . . . , xn) ∈ F (Rd, n) associates the power di-
agram V (S,w) = (C1, . . . , Cn) that equipartitions the
measure, is continuous.

6.2 The construction of the mapping
F (Rd, n) Σn−→ S(W⊕(d−1)

n ).
This is a construction that illustrates again the con-
figuration space - test map method. We construct the
test map in details when d = 2; the case d > 2 be-
ing entirely analogous. Proceeding by contradiction, we
suppose that there is a convex polygon K that doesn’t
satisfy Conjecture 6.1 for some n > 1. We start from
S = (x1, x2, . . . , xn) ∈ F (R2, n). The area of K can be
considered as a nice measure in R2, so from the previous
section we have power diagram V (S,w) = (C1, . . . , Cn)
in the plane that equipartitions the area. If we put
C ′i := Ci ∩K, we have the convex equal area partition
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of K:
(C ′1, C ′2, . . . , C ′n) ∈ CEAP (K,n),

where CEAP (K,n) ⊂ Conv(R2) × · · · × Conv(R2) is
the space of convex equal area partitions of K, with
suitably defined metric. Then we map this to n-tuple
of perimeters (p(−) denotes the perimeter):

7→ (p(C ′1), p(C ′2), . . . , p(C ′n)) ∈ Rn,

and normalize it by subtracting 1
n

∑n
k=1 p(C ′k) in order

to get an element of Wn:

7→
(
p(C ′1)− 1

n

n∑
k=1

p(C ′k), . . . , p(C ′n)− 1
n

n∑
k=1

p(C ′k)
)
.

By assumption, the perimeters of pieces are never all
equal, so the image of this function is inWn\{0}. There-
fore we can take the radial projection to sphere in Wn:
S(Wn) ∼= Sn−2. There is a natural Σn-action on all
these spaces, given by permuting the coordinates, and
we see that all considered mappings are Σn-equivariant.
So, we have constructed an equivariant mapping:

F(R2,n) Σn−→ S(Wn).

It can be verified that this map is continuous and the
reader is referred for details to [14].

In the case of Conjecture 6.2 we proceed analogously.
Each S = (x1, x2, . . . , xn) ∈ F (Rd, n) maps continu-
ously to (C ′1, C ′2, . . . , C ′n) ∈ CEAP (K,n), and then to

[(ϕ1(C ′1), . . . , ϕ1(C ′n)),
. . . . . . , (ϕd−1(C ′1), . . . , ϕd−1(C ′n))] ∈ (Rn)d−1.

After that, in each n-tuple, we subtract the average
value 1

n

∑n
k=1 ϕi(C ′k), and then we get an element of

W
⊕(d−1)
n . If we suppose to the contrary that there is

no equipartiton on which all ϕi are equal (for all i),
it is obvious that the obtained element of W⊕(d−1)

n is
not zero, so we can take the radial projection to the
sphere S(W⊕(d−1)

n ). And again, the group Σn acts nat-
urally on all these spaces (permuting in each n-tuple).
The corresponding mappings are Σn-equivariant, so we
have: F(Rd,n) Σn−→ S(W⊕(d−1)

n ).
Notice that S(W⊕(d−1)

n ) ≈ S(n−1)(d−1)−1, but we
keep the notation S(W⊕(d−1)

n ) since it contains the in-
formation about the Σn-action, which we will need.

6.3 Proof of conjectures for a prime number of
pieces

The main theorem is based on cohomological index. It
was proven in [4].
Theorem 6.1. Let p be a prime number and d > 2.
Then there is no Zp-equivariant mapping

F (Rd, p)→ S(W⊕(d−1)
p ).

Consequently, there is no Σp-equivariant mapping

F (Rd, p)→ S(W⊕(d−1)
p ).

Proof. Suppose to the contrary that there exists f :
F (Rd, p) Zp−→ S(W⊕(d−1)

p ). From the monotonicity prop-
erty of cohomological index (Proposition 5.2) we have:

IndZp(F (Rd, p);Zp) ⊃ IndZp(S(W⊕(d−1)
p );Zp).

We know that the index of configuration space F (Rd, p)
with Zp coefficients is:

IndZp(F (Rd, p)) = H>(d−1)(p−1)+1(BZp;Zp)

=


〈t(d−1)(p−1)+1〉, p = 2,

〈st
(d−1)(p−1)

2 , t
(d−1)(p−1)

2 +1〉, p > 2.

On the other hand, observe that the Zp-action on
S(W⊕(d−1)

p ) is free. Indeed, since p is prime, it is enough
to check that the generator of Zp acts freely. The Zp-
action cyclically permutes coordinates in each Wp. If
the Zp-action of the generator fixes some vector
(w1, . . . , wp) ∈ Wp, then w1 = . . . = wp, so all of them
are zeros. The same holds for all d−1 copiesWp, and we
get the origin as the only element on which the action
is not free, but it is not in S(W⊕(d−1)

p ). So, the action
if free indeed. Then according to section 5.1 we know
that EZp×ZpS(W⊕(d−1)

p ) ' S(W⊕(d−1)
p )/Zp. Therefore

for all l > dimS(W⊕(d−1)
p ) = (d−1)(p−1)−1 we have

H l(EZp ×Zp S(W⊕(d−1)
p ) ;Zp)

= H l(S(W⊕(d−1)
p )/Zp ;Zp)

= 0.
and
IndZp(S(W⊕(d−1)

p );Zp) =

ker
(
H∗(BZp;Zp)→ H∗(EZp ×Zp S(W⊕(d−1)

p );Zp
)

⊃ H>(d−1)(p−1)(BZp;Zp).
But from the monotonicity property we conclude that

H>(d−1)(p−1)+1(BZp;Zp) ⊃ H>(d−1)(p−1)(BZp;Zp),
which is a contradiction since for p > 2 we have:
t

(d−1)(p−1)
2 ∈ IndZp(S(W⊕(d−1)

p )) and

t
(d−1)(p−1)

2 /∈ IndZp(F (Rd, p));

while for p = 2 we have: t(d−1)(p−1) ∈ IndZp(S(W⊕(d−1)
p ))

and t(d−1)(p−1) /∈ IndZp(F (Rd, p))). This contradiction
proves the theorem.

The previous discussion together with Theorem 6.1
establishes the N&RR conjecture in full generality for
all primes p. In summary we can state the following
beautiful consequences.
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Theorem 6.2. For a given planar convex polygon K
and any prime number p there exists a partition of the
plane into p convex pieces C1, . . . , Cp such that

area(C1 ∩K) = · · · = area(Cp ∩K) and

perimeter(C1 ∩K) = · · · = perimeter(Cp ∩K).

Theorem 6.3. For a given convex body K in Rd (d >
2), a nice measure µ on Rd, any prime p and any
d− 1 continuous functions ϕ1, . . . , ϕd−1 : Conv(Rd)→
R, there exists a partition of Rd into p convex pieces
C1, . . . , Cp such that

µ(C1 ∩K) = · · · = µ(Cp ∩K) and

ϕi(C1 ∩K) = · · · = ϕi(Cp ∩K),∀ i ∈ {1, . . . , d− 1}.

7 An Open Problem

Finally we conclude with some simple questions that
every high school student can understand but that are
still unanswered. Can every triangle be partitioned into
6 pieces of equal area and equal perimeter? For 7 pieces
we know the answer: yes. For 125 or 72015 pieces, too.
But for 6? Or 10 pieces? No one knows. Not yet.
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