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Le Cam theory on the comparison
of statistical models
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Abstract

We recall the main concepts of the Le Cam theory of statistical experi-
ments, especially the notion of Le Cam distance and its properties. We
also review classical tools for bounding such a distance before present-
ing some examples. A proof of the classical equivalence result between
density estimation problems and Gaussian white noise models will be
analyzed.
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1 Introduction

The theory of Mathematical Statistics is based on the
notion of statistical model, also called statistical exper-
iment or just experiment. A statistical model, as in its
original formulation due to Blackwell (1951), is a triple

P = (Ω,T , (Pθ : θ ∈ Θ)),

where (Ω,T ) is a sample space, Θ is a set called the
parameter space and (Pθ : θ ∈ Θ) is a family of probab-
ility measures on (Ω,T ). This definition is a mathem-
atical abstraction intended to represent a concrete ex-
periment; consider for example the following situation
taken from the book of Le Cam and Yang (2000). A
physicist decides to estimate the half life of Carbon 14,
C14. He supposes that the life of a C14 atom has an
exponential distribution with parameter θ and, in or-
der to develop his investigation, he takes a sample of
n atoms of C14. The physicist fixes in advance the
duration of the experiment, say 2 hours, and then he
counts the number of disintegrations. Formally, this
leads to the definition of the statistical model P1 =
(N,P(N), (Pθ : θ ∈ (0,∞))) where Pθ represents the
law of the random variable X counting the number of
disintegrations observed in 2 hours. This is not the only
way to proceed if we want to estimate the half life of

Carbon 14. Indeed, the physicist could choose to con-
sider the first random time Y after which a fixed num-
ber of disintegrations, say 106, have occurred. In this
case he will represent the experiment via the statistical
model P2 = (R+,B(R+), (Qθ : θ ∈ (0,∞))) where Qθ

is the law of the random variable Y . A natural ques-
tion is then how much “statistical information” the con-
sidered experiments contain or, more precisely, when
the experiment P1 will be more informative than P2
and conversely.

The quest for comparison of statistical experiments
was initiated by the paper of Bohnenblust, Shapley and
Sherman (1949) followed by the papers of Blackwell
(1951, 1953) where the following definition was intro-
duced: “P1 is more informative than P2” if for any
bounded loss function L, ‖L‖∞ ≤ 1, and any decision
procedure ρ2 in the experiment P2 there exists a de-
cision procedure ρ1 in the experiment P1 such that

Rθ(P1, ρ1, L) ≤ Rθ(P2, ρ2, L), ∀θ ∈ Θ.
Here we denote by Rθ(P1, ρ1, L) and Rθ(P2, ρ2, L) the
statistical risk for the experiments P1 and P2, respect-
ively.

However, this can lead to two models being non-
comparable. This issue was solved by Le Cam who
introduced the notion of deficiency δ(P1,P2). We will
give a precise definition in the forthcoming sections.
Here, we only remark two interesting properties:
• δ(P1,P2) is a well defined non-negative real num-
ber for every two given statistical models P1 and
P2 sharing the same parameter space.
• For every loss function L with 0 ≤ L ≤ 1 and
every decision procedure ρ2 available on Θ using
P2, there exists a decision procedure ρ1 in P1
such that for all θ ∈ Θ,
Rθ(P1, ρ1, L) ≤ Rθ(P2, ρ2, L) + δ(P1,P2).

This solves the issue mentioned above: It could be that
both δ(P1,P2) and δ(P2,P1) are strictly positive, in
which case they will not be comparable according to the
first definition; nevertheless, we can still say “how much
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information” we lose when passing from one model to
the other one. Le Cam’s theory has found applications
in several problem in statistical decision theory and it
has been developed, for example, for nonparametric re-
gression, nonparametric density estimation problems,
generalized linear models, diffusion models, Lévy mod-
els, spectral density estimation problem. Historically,
the first results of asymptotic equivalence in a nonpara-
metric context date from 1996 and are due to Brown
and Low (1996) and Nussbaum (1996). The first two
authors have shown the asymptotic equivalence of non-
parametric regression and a Gaussian white noise model
while the third one those of density estimation prob-
lems and Gaussian white noise models. Over the years
many generalizations of these results have been pro-
posed such as Brown et al. (2002), Carter (2006, 2007,
2009), Grama and Nussbaum (2002), Meister and Reiß
(2013), Reiß (2008), Rohde (2004) and Schmidt-Hieber
(2014) for nonparametric regression or Brown et al.
(2004), Carter (2002), Jähnisch and Nussbaum (2003)
and Mariucci (To appear) for nonparametric density es-
timation models. Another very active field of study is
that of diffusion experiments. The first result of equi-
valence between diffusion models and Euler scheme was
established in 1998, see Milstein and Nussbaum (1998).
In later papers generalizations of this result have been
considered (see Genon-Catalot and Laredo (2014) and
Mariucci (2016b)) as well as different statistical prob-
lems always linked with diffusion processes (see, e.g.,
Dalalyan and Reiß (2006, 2007), Delattre and Hoff-
mann (2002) and Genon-Catalot, Laredo and Nuss-
baum (2002)). Among others we can also cite equi-
valence results for generalized linear models (see, e.g.,
Grama and Nussbaum (1998)), time series (see, e.g.,
Grama and Neumann (2006) and Milstein and Nuss-
baum (1998)), GARCH model (see, e.g., Buchmann
and Müller (2012)), functional linear regression (see,
e.g.,Meister (2011)), spectral density estimation (see,
e.g. Golubev, Nussbaum and Zhou (2010)), volatil-
ity estimation (see, e.g. Reiß (2011)) and jump mod-
els (see, e.g., Mariucci (2015, 2016a)). Negative res-
ults are somewhat harder to come by; the most not-
able among them are Brown and Zhang (1998), Efro-
movich and Samarov (1996) and Wang (2002). An-
other new research direction that has been explored in-
volves quantum statistical experiments (see, e.g., Bus-
cemi (2012)).

The aim of this survey paper is to present some basic
concepts of the Le Cam theory of asymptotic equival-
ences between statistical models. Our aim in this re-
view is to give an accessible introduction to the subject.
Therefore, we will not follow the most general approach
to the theory, also because such an approach is already
available in the literature, see e.g., Le Cam (1986), Le
Cam and Yang (2000) and van der Vaart (2002). In or-
der to achieve such a goal, the paper has been organized
as follows. In Section 2 we recall the definition of the
Le Cam distance and its statistical meaning. Particular
attention has been payed to the interpretation of the Le

Cam distance in terms of decision theory. In Section 3
we collect some classical tools to control the Le Cam
distance before passing to some examples described in
Section 4. Section 5 is devoted to show in details a
proof of a classical result in Le Cam theory, namely
the asymptotic equivalence between density estimation
problems and Gaussian white noise models.

2 Deficiency and Le Cam distance

As we have already pointed out, a possible way to
compare two given statistical models (having the same
parameter space) could be to compare the correspond-
ing risk functions or to ask “how much information”
we lose when passing from one model to the other one,
saying that there is no loss if we have at our disposal
a mechanism able to convert the observations from the
distribution P1,θ to observations from P2,θ. If we adopt
the latter point of view a natural formalization for such
a mechanism is the notion of Markov kernel.
Definition 2.1. Let (Xi,Ti), i = 1, 2, be two measur-
able spaces. A Markov kernel K with source (X1,T1)
and target (X2,T2) is a map K : X1 × T2 → [0, 1]
with the following properties:
• The map x 7→ K(x,A) is T1-measurable for every
A ∈ T2.
• The map A 7→ K(x,A) is a probability measure
on (X2,T2) for every x ∈X1.

We will denote by K : (X1,T1) → (X2,T2) a
Markov kernel with source (X1,T1) and target (X2,T2).

Starting from a Markov kernel K : (X1,T1) →
(X2,T2) and a probability measure P1 on (X1,T1) one
can construct a probability measure on (X2,T2) in the
following way:

KP1(A) =
∫
K(x,A)P1(dx), ∀A ∈ T2.

Roughly speaking we can think that two models
P1 and P2 contain “the same amount of information
about θ” if there exist two Markov kernels, K1 and
K2, not depending on θ, such that K1P1,θ = P2,θ and
K2P2,θ = P1,θ. This idea has been formalized in the
sixties by Lucien Le Cam and led to the notion of the
deficiency, hence to the introduction of a pseudo-metric
on the class of all statistical experiments having the
same parameter space.

The definition of the deficiency in its most general
form involves the notion of “transition” which is a gen-
eralization of the concept of Markov kernel. In this pa-
per, however, we prefer to keep things simpler and only
focus on the case in which one has to deal with dom-
inated statistical models having Polish sample spaces
(see below for a definition). The advantage is that
in this case the definition of deficiency simplifies and
the abstract concept of transition coincides with that
of Markov kernel (see Proposition 9.2 in Nussbaum
(1996)).
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Definition 2.2. A statistical model
P1 = (X1,T1, (P1,θ : θ ∈ Θ))

is called Polish if its sample space (X1,T1) is a sep-
arable completely metrizable topological space. P1 is
said to be dominated if there exists a σ-finite measure µ
on (X1,T1) such that, for all θ ∈ Θ, P1,θ is absolutely
continuous with respect to µ. The measure µ is called
the dominating measure.
Example 2.3. Typical examples of Polish spaces in
probability theory are the spaces R,Rn,R∞, the space
CT of continuous functions on [0, T ] equipped with the
supremum norm d(x, y) = sup0≤t≤T |xt − yt|, the space
D of càdlàg functions equipped with the Skorokhod
metric.
Definition 2.4. Let Q1 and Q2 be two probability
measures defined on a measurable space Ω. The total
variation distance between Q1 and Q2 is defined as the
quantity:

‖Q1 −Q2‖TV = sup
A⊆Ω
|Q1(A)−Q2(A)| = 1

2L1(Q1, Q2),

where L1(Q1, Q2) denotes the L1 norm between Q1 and
Q2.
Definition 2.5. Let Pi = (Xi,Ti, (Pi,θ : θ ∈ Θ)),
i = 1, 2, be two experiments. The deficiency δ(P1,P2)
of P1 with respect to P2 is the number

δ(P1,P2) = inf
T

sup
θ∈Θ
‖TP1,θ − P2,θ‖TV ,

for an infimum taken over all Markov kernels T : (X1,T1)→
(X2,T2) and ‖ · ‖TV denotes the total variation dis-
tance.
Definition 2.6. The Le Cam distance or ∆-distance
between P1 and P2 is defined as

∆(P1,P2) = max(δ(P1,P2), δ(P2,P1)).
The Le Cam distance is a pseudo-metric on the space

of all statistical models: It satisfies the triangle inequal-
ity ∆(P1,P3) ≤ ∆(P1,P2) + ∆(P2,P3) but the
equality ∆(P1,P2) = 0 does not imply that P1 and
P2 actually coincide.

Concerning the glossary, when δ(P1,P2) = 0 (i.e.
if the experiment P2 can be reconstructed from the
experiment P1 by a Markov kernel), we will say that
P2 is less informative than P1, or that P1 is better
than P2, or that P1 is more informative than P2.
When ∆(P1,P2) = 0 the models P1 and P2 are said
to be equivalent and two sequences of statistical mod-
els (P1,n)n∈N and (P2,n)n∈N are called asymptotically
equivalent when ∆(P1,n,P2,n)→ 0 as n→∞.

A way to interpret the Le Cam distance between
experiments is to see it as a numerical indicator of the
cost needed to reconstruct one model from the other one
and vice-versa, via Markov kernels. But, as we said in
the introduction, a way to compare statistical models

that seems just as natural is to compare the respective
risk functions. Let us then highlight how the definition
of the deficiency has a clear interpretation in terms of
statistical decision theory. To that aim, we will start
by recalling the standard framework:
• A statistical model, which is just an indexed set

P = (X ,T , (Pθ : θ ∈ Θ)) of probability meas-
ures all defined on the same measurable space
(X ,T ), for some set X equipped with a σ-field
T . The elements of Θ are sometimes called the
states of Nature.
• A space A of possible actions or decisions that
the statistician can take after observing x ∈ X .
For example, in estimation problems we can take
A = Θ. To make sense of the notion of integral on
A we need it to be equipped with a σ-field A.
• A loss function L : Θ×A 7→ (−∞,∞], with the in-
terpretation that action z ∈ A incurs a loss L(θ, z)
when θ is the true state of Nature.
• A (randomized) decision rule ρ in P is a Markov
kernel ρ : (X ,T )→ (A,A ).
• The risk is:

Rθ(P , ρ, L) =
∫

X

(∫
A
L(z, θ)ρ(y, dz)

)
Pθ(dy).

More precisely, the standard interpretation of risk
is as follows. The statistician observes a value
x ∈ X obtained from a probability measure Pθ.
He does not know the value of θ and must take a
decision z ∈ A. He does so by choosing a probab-
ility measure ρ(x, ·) on A and picking a point in A
at random according to ρ(x, ·). If he has chosen z
when the true distribution of x is Pθ, he suffers a
loss L(θ, z). His average loss when x is observed
is then

∫
L(θ, z)ρ(x, dz). His all over average loss

when x is picked according to Pθ is the integral∫ ( ∫
L(θ, z)ρ(x, dz)

)
Pθ(dx).

A very important result allowing to translate the
notion of deficiency as described above in a decision
theory language is the following:
Theorem 2.7 (See Le Cam (1964) or Theorem 2, page
20 in Le Cam (1986)). Let ε > 0 be fixed. δ(P1,P2) <
ε if and only if: ∀ decision rule ρ2 on P2 and for all
bounded loss function L, ‖L‖∞ ≤ 1, there exists a de-
cision rule ρ1 on P1 such that

Rθ(P1, ρ1, L) < Rθ(P2, ρ2, L) + ε, ∀θ ∈ Θ.

In other words we have that δ(P1,P2) is equal to

inf
ρ1

sup
ρ2

sup
θ

sup
L
|R(P1, ρ1, L, θ)−R(P2, ρ2, L, θ)|,

where the last supremum is taken on the set of all loss
functions L s.t. 0 ≤ L(θ, z) ≤ 1, ∀z ∈ A, ∀θ ∈ Θ and ρi
belongs to the set of all randomised decision procedures
in the experiment Pi, i = 1, 2.
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Remark 2.8. An important consequence of the previ-
ous theorem is that if two sequences of experiments
(P1,n)n∈N and (P2,n)n∈N are asymptotically equival-
ent in Le Cam’s sense then asymptotic properties of any
inference problem are the same for these experiments.
This means that when two sequences of statistical ex-
periments are proven to be asymptotically equivalent
it is enough to choose the simplest one, to study there
the inference problems one is interested in and to trans-
fer the knowledge about such inference problems to the
more complicated sequence, via Markov kernels.

2.1 How to transfer decision rules via
randomisations

p
Let Pi,n = (Xi,n,Ti,n, (Pi,n,θ : θ ∈ Θ)), i = 1, 2,

be two sequences of statistical models sharing the same
parameter space Θ and having Polish sample spaces
(Xi,n,Ti,n). Suppose that there exist Markov kernels
Kn such that ‖KnP1,n,θ − P2,n,θ‖TV → 0 uniformly on
the parameter space. Then, given a decision rule (or
an estimator) π2,n on P2,n we can define a decision
rule π1,n on P1,n that, asymptotically, has the same
statistical risk as π2,n. To show that let us start by
considering the easier case in which both Kn and π2,n
are deterministic. More precisely, we suppose that Kn

is of the form Kn(A) = IASn(x) for all A ∈ T2,n for
some functions Sn.

Then, we have (suppressing the index n to shorten
notations):∣∣∣∣∣
∫

X1
L(θ, π1(y))P1,θ(dy)−

∫
X2
L(θ, π2(y))P2,θ(dy)

∣∣∣∣∣
≤
∣∣∣∣∣
∫

X1
L(θ, π1(y))P1,θ(dy)−

∫
X2
L(θ, π2(y))KP1,θ(dy)

∣∣∣∣∣
+
∣∣∣∣∣
∫

X2
L(θ, π2(y))

[
KP1,θ(dy)− P2,θ(dy)

]∣∣∣∣∣
≤
∣∣∣∣∣
∫

X1
L(θ, π1(y))P1,θ(dy)−

∫
X1
L(θ, π2(S(y)))P1,θ(dy)

∣∣∣∣∣
+ ‖L‖∞‖KP1 − P2‖TV .

In particular, assuming that the loss function L is bounded
by 1 and defining

π1(y) = π2(S(y))

one finds that∣∣∣∣∣
∫

X1
L(θ, π1(y))P1,θ(dy)−

∫
X2
L(θ, π2(y))P2,θ(dy)

∣∣∣∣∣ ≤
‖KP1 − P2‖TV → 0,

that is, the decision rule π1,n(y) = π2,n(Sn(y)) has
asymptotically the same risk as π2,n. The same kind
of computations work in the general case in which the
Kn’s are not deterministic and (π2,n) is a sequence of

decision rule having (An,An) as action’s spaces. In this
case one can show that the randomized sequence of de-
cision rules

π1,n(y, C) =
∫

X2,n
π2,n(x,C)K(y, dx),

∀y ∈X1,n, ∀C ∈ An

has asymptotically the same risk as π2,n.
Remark 2.9. Let Pi be a probability measure on (Ei, Ei)
and Ki a Markov kernel on (Gi,Gi). One can then
define a Markov kernel K on (∏n

i=1Ei,⊗ni=1Gi) in the
following way:

K(x1, . . . , xn;A1 × · · · × An) =
n∏
i=1

Ki(xi, Ai),

for all xi in Ei and for all Ai in Gi. Clearly K⊗ni=1Pi =
⊗ni=1KiPi.

3 How to control the Le Cam distance

Even if the definition of deficiency has a perfectly reas-
onable statistical meaning, it is not easy to compute:
Explicit computations have appeared but they are rare
(see Hansen and Torgersen (1974) and Torgersen (1972,
1974) and Section 1.9 in Shiryaev and Spokoiny (2000)).
More generally, one may hope to find more easily some
upper bounds for the ∆-distance. We collect below
some useful techniques for this purpose.
Property 3.1. Let Pj = (X ,T , (Pj,θ; θ ∈ Θ)), j =
1, 2, be two statistical models having the same sample
space and define ∆0(P1,P2) := supθ∈Θ ‖P1,θ−P2,θ‖TV .
Then, ∆(P1,P2) ≤ ∆0(P1,P2).

In particular, Property 3.1 allows us to bound the
∆-distance between statistical models sharing the same
sample space by means of classical bounds for the total
variation distance. To that aim, we collect below some
useful (and classical) results.
Fact 3.2 (see Le Cam 1969, p. 35). Let P1 and P2 be
two probability measures on X , dominated by a com-
mon measure ξ, with densities gi = dPi

dξ , i = 1, 2. Define

L1(P1, P2) =
∫

X
|g1(x)− g2(x)|ξ(dx),

H(P1, P2) =
(∫

X

(√
g1(x)−

√
g2(x)

)2
ξ(dx)

)1/2

.

Then,

H2(P1, P2)
2 ≤ ‖P1−P2‖TV = 1

2L1(P1, P2) ≤ H(P1, P2).

An important property is the following:
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Property 3.3. If µ and ν are product measures defined
on the same measurable space, µ = ⊗m

j=1 µj and ν =⊗m
j=1 νj, then

H2(µ, ν) = 2
[
1−

m∏
j=1

[
1− H2(µj , νj)

2

]]
.

Proof. See, e.g., Zolotarev (1983), p. 279.
Thus one can express the distance between distribu-

tions of vectors with independent components in terms
of the component-wise distances. A consequence of
Property 3.3 is:
Property 3.4. If µ and ν are product measures defined
on the same measurable space, µ = ⊗m

j=1 µj and ν =⊗m
j=1 νj, then

H2(µ, ν) ≤
m∑
i=1

H2(µi, νi).

Proof. See, e.g., Strasser (1985), Lemma 2.19.
Property 3.5. The Hellinger distance between two nor-
mal distributions µ ∼ N (m1, σ

2
1) and ν ∼ N (m2, σ

2
2)

is:

H2(µ, ν) = 2
[
1−

[
2σ1σ2

σ2
1 + σ2

2

]1/2

exp
[
− (m1 −m2)2

4(σ2
1 + σ2

2)

]]

≤ 2
∣∣∣∣∣1− σ2

1
σ2

2

∣∣∣∣∣+ (m1 −m2)2

2σ2
2

.

Proof. See, e.g., Mariucci (2015), Fact 1.5.

3.1 The likelihood process
Another way to control the Le Cam distance lies in
the deep relation linking the equivalence between ex-
periments to the proximity of the distributions of the
related likelihood ratios.

Let Pj = (Xj ,Tj , (Pj,θ : θ ∈ Θ)) be a statistical
model dominated by Pj,θ0 , θ0 ∈ Θ, and let Λj(θ) =
dPj,θ
dPj,θ0

be the density of Pj,θ with respect to Pj,θ0 . In
particular, one can see Λj(θ) as a real random variable
defined on the probability space (Xj ,Tj), i.e. one can
see (Λj(θ))θ∈Θ as a stochastic process. For that reason
we introduce the notation ΛPj := (Λj(θ), θ ∈ Θ) and
we call ΛPj the likelihood process.

A key result of the theory of Le Cam is the following.
Property 3.6. Let Pj = (Xj ,Tj , (Pj,θ : θ ∈ Θ)),
j = 1, 2, be two experiments. If the family (Pj,θ : θ ∈ Θ)
is dominated by Pj,θ0, then P1 and P2 are equivalent
if and only if their likelihood processes under the dom-
inating measures P1,θ0 and P2,θ0 coincide.

Proof. see Strasser (1985), Corollary 25.9.

Suppose now that there are two processes (Λn,∗
j (θ))θ∈Θ,

j = 1, 2 defined on a same probability space (X ∗,T ∗,Π∗)
and such that the law of (Λn

j (θ))θ∈Θ under Pj,θ0 is equal
to the law of (Λn,∗

j (θ))θ∈Θ under Π∗, j = 1, 2. Then, the
following holds (see Le Cam and Yang (2000), Lemma
6).
Property 3.7. If ΛP1 and ΛP2 are the likelihood pro-
cesses associated with the experiments P1 and P2,
then

∆(Pn
1 ,P

n
2 ) ≤ sup

θ∈Θ
EΠ∗

∣∣∣∣Λn,∗
1 (θ)− Λn,∗

2 (θ)
∣∣∣∣.

3.2 Sufficiency and Le Cam distance
A very useful tool, when comparing statistical models
having different sample spaces, is to look for a sufficient
statistic. The introduction of the term sufficient stat-
istic is usually attributed to R.A. Fisher who gave sev-
eral definitions of the concept. We cite here the present-
ation of the subject from Le Cam (1964). Fisher’s most
relevant statement seems to be the requirement “...that
the statistic chosen should summarize the whole of the
relevant information supplied by the sample.” Such a
requirement may be made precise in various ways, the
following three interpretations are the most common.
(i) The classical, or operational definition of suffi-

ciency, claims that a statistic S is sufficient if,
given the value of S, one can proceed to a post-
experimental randomization reproducing variables
which have the same distributions as the originally
observable variables.

(ii) The Bayesian interpretation. A statistic S is suffi-
cient if for every a priori distribution of the para-
meter the a posteriori distributions of the para-
meter given S is the same as if the entire result of
the experiment was given.

(iii) The decision theoretical concept. A statistic S is
sufficient if for every decision problem and every
decision procedure made available by the experi-
ment there is a decision procedure, depending on
S only, which has the same performance charac-
teristics.

The study of sufficiency in an abstract way can be found
in Halmos and Savage (1949). The last section of such
a work is named “The value of sufficient statistics in
statistical methodology" and starts with the following
observation:

We gather from conversations with some able
and prominent mathematical statisticians that
there is doubt and disagreement about just
what a sufficient statistic is sufficient to do,
and in particular about in what sense if any
it contains “all the information in a sample".

In Bahadur (1954) a continuation of the work of Hal-
mos and Savage (1949) can be found. A particular ef-
fort was done to highlight the interest of using sufficient
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statistics in statistical methodology. One of the main
results in Bahadur (1954) is Theorem 7.1 establishing
the equivalence of the decision theoretical concept of
sufficiency and the operational concept in terms of con-
ditional probabilities. We mention this fact because of
its similarity with the result of Le Cam, here stated as
Theorem 2.7, that is the core of the theory of compar-
ison of statistical experiments.

Formally, let P = (X ,T , (Pθ : θ ∈ Θ)) be a stat-
istical model. A statistic is a measurable map from a
measurable space (X ,T ) to another measurable one
(X2,T2). We denote by S#Pθ the image law of S under
Pθ, i.e S#Pθ(B) = Pθ(S−1(B)), for all B ∈ T2.
Definition 3.8. S is a sufficient statistic for (Pθ : θ ∈
Θ) if for any A ∈ T there exists a function φA, with
φA ◦ S T -measurable, such that

Pθ(A ∩ S−1(B)) =
∫
B
φA(y)S#Pθ(dy),

for all A in T , B in T2 and θ in Θ. An arbitrary
subalgebra T0 of T is said to be sufficient for (Pθ :
θ ∈ Θ) if for all A ∈ T there exists a T0-measurable
function φA such that

Pθ(A ∩ A0) =
∫
A0
φA(x)Pθ(dx), ∀A0 ∈ T0, ∀θ ∈ Θ.

The set {S−1(B) : B ∈ T2} is called the subalgebra
induced by the statistic S.
Property 3.9 (See, e.g. Bahadur (1954)). A statistic
S is sufficient for (Pθ : θ ∈ Θ) if the subalgebra induced
by S is sufficient for (Pθ : θ ∈ Θ).

In accordance with the notation introduced in Sec-
tion 2, we will state Theorem 7.1 in Bahadur (1954) as
follows (recall that (A,A ) denotes the action/decision
space.)
Theorem 3.10 (See Theorem 7.1, Bahadur (1954)). If
the subalgebra T0 of T is sufficient for (Pθ : θ ∈ Θ),
then for every decision rule ρ : (X ,T ) 7→ (A,A ) there
exists a decision rule π : (X ,T0) 7→ (A,A ) such that

Pθρ(C) = Pθπ(C), ∀C ∈ A , ∀θ ∈ Θ.

Before focusing on the relation between the notion
of sufficient statistic and the one of equivalence between
statistical models, let us recall the Neyman-Fisher fac-
torization theorem, a powerful tool for identifying suffi-
cient statistics for a given dominated family of probab-
ilities. Let (Pθ : θ ∈ Θ) be a family of probabilities on
(Ω,T ), absolutely continuous with respect to a σ-finite
measure µ, and denote by pθ := dPθ

dµ the density.

Theorem 3.11. A statistic S : (Ω,T ) → (X ,B) is
sufficient for (Pθ : θ ∈ Θ) if and only if there exists a
B-measurable function gθ ∀θ ∈ Θ and a T -measurable
function h 6= 0 such that

pθ(x) = gθ(S(x))h(x), µ-a.s. ∀x ∈ Ω.

An important result linking the Le Cam distance
with the existence of a sufficient statistic is the follow-
ing:
Property 3.12. Let Pi = (Xi,Ti, (Pi,θ : θ ∈ Θ)),
i = 1, 2, be two statistical models. Let S : X1 → X2
be a sufficient statistic such that the distribution of S
under P1,θ is equal to P2,θ. Then ∆(P1,P2) = 0.
Proof. In order to prove that δ(P1,P2) = 0 it is enough
to consider the Markov kernelM : (X1,T1)→ (X2,T2)
defined asM(x,B) := IB(S(x)) ∀x ∈X1 and ∀B ∈ T2.
Conversely, to show that δ(P2,P1) = 0 one can con-
sider the Markov kernel K : (X2,T2) → (X1,T1)
defined as K(y, A) = EP2,θ(IA|S = y), ∀y ∈ X2, ∀A ∈
T1. Since S is a sufficient statistic, the Markov ker-
nel K does not depend on θ. Denoting by S#P1,θ the
distribution of S under P1,θ, one has:

KP2,θ(A) =
∫
K(y, A)P2,θ(dy)

=
∫

EP2,θ(IA|S = y)S#P1,θ(dy) = P1,θ(A).

For asymptotic arguments, one also needs an appro-
priate version of the notion of sufficiency.
Definition 3.13. Let Pn = (Xn,Tn, (Pn,θ : θ ∈ Θ))
be a sequence of statistical models. The sequence of
subalgebras T̃n of Tn is asymptotically sufficient for
(Pn,θ : θ ∈ Θ) if ∆(Pn,Pn|T̃n

) → 0, where Pn|T̃n
denotes the restriction of the experiment Pn to T̃n, i.e.
Pn|T̃n

= (Xn, T̃n, (P̃n,θ : θ ∈ Θ)), where P̃n,θ(A) =
Pn,θ(A), for all A ∈ T̃n.

This is a stronger notion than asymptotic equival-
ence; indeed, let P1,n and P2,n be two sequences of
experiments having the same parameter space. Then,
by the triangle inequality, it is clear that if there exist
two sequences S1,n and S2,n of asymptotically sufficient
statistics in P1,n and P2,n respectively, taking values
in the same measurable space, and such that

sup
θ∈Θ
‖S1,n#P1,θ − S2,n#P2,θ‖TV → 0 as n→∞,

then the sequences P1,n and P2,n are asymptotically
equivalent. We also recall that an important generaliz-
ation of the notion of sufficiency is the notion of insuf-
ficiency. The discussion of this concept is beyond the
purposes of this paper, the reader is referred to Le Cam
(1974) or Chapter 5 in Le Cam (1986) for an exhaustive
treatment of the subject.

4 Examples

To better understand what is the typical form of an
asymptotic equivalence result let us analyze some ex-
amples. As a toy example let us start by considering
the following parametric case.
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Example 4.1. Let P1,n be the statistical model as-
sociated with the observation of a vector X of n inde-
pendent Gaussian random variables N (θ, 1). Here the
inference concerns θ and the parameter space Θ will be
an interval of R. Formally

P1,n = (Rn,B(Rn), (P1,θ : θ ∈ Θ)),

where Pθ is the law of X.
Then, let us denote by P2,n the experiment associ-

ated with the observation of the empirical mean relative
to the previous random variables, i.e.

P2,n = (R,B(R), (P2,θ : θ ∈ Θ)),
where P2,θ is the law of a Gaussian random variable of
mean θ and variance 1/n. By means of the Neyman-
Fisher factorization theorem it is easy to see that the
application S : Rn → R, S(x1, . . . , xn) =

∑n

i=1 xi
n is a

sufficient statistic. An immediate application of Prop-
erty 3.12 implies that ∆(P1,n,P2,n) = 0 for all n.

Before passing to some examples in a nonparamet-
ric framework, let us recall a result due to Carter and
concerning the asymptotic equivalence between a mul-
tinomial and a Gaussian multivariate experiment. The
parameter space will be a subset of Rm and the reason
for which we focus on such a result lies on its being a
very useful tool in establishing global asymptotic equi-
valence results for density estimation problems.
Example 4.2. Let X = (X1, . . . , Xm) be a random
vector having a multinomial distribution of parameters
n and (p1, . . . , pm) with pi ≥ 0 for i = 1, . . . ,m and∑m
i=1 pi = 1.
Denote by P the statistical model associated with a

multinomial distribution Pθ =M(n; (θ1, . . . , θm)) with
parameters θ = (θ1, . . . , θm) that belong to ΘR ⊂ Rm,
a set consisting of all vectors of probabilities such that

maxi θi
mini θi

≤ R.

The main result in Carter (2002) is a bound of the
Le Cam distance between statistical models associated
with multinomial distributions and multivariate normal
distributions with the same means and covariances as
the multinomial ones. More precisely, let us denote
by Q the statistical model associated with a family
of multivariate normal distributions Qθ = N (µ,Σ),
θ ∈ ΘR, where

µ = (nθ1, . . . , nθm), Σ = (σi,j)i,j=1,...,m

with σi,j = nθi(1− θi)δi=j − nθiθjδi 6=j .
Theorem 4.3 (see Carter (2002), p. 709). With the
notations above,

∆(P ,Q) ≤ CR
m lnm√

n

for a constant CR that depends only on R.

Another interesting result contained in Carter (2002)
is the approximation of Q by a Gaussian experiment
with independent coordinates. Let us denote by Q̃ the
statistical model associated with m independent Gaus-
sian random variables N (

√
θi, 1/(4n)), i = 1, . . . ,m.

Theorem 4.4 (see Carter (2002), p. 717–719). With
the notations above,

∆(Q, Q̃) ≤ CR
m√
n

for a constant CR that depends only on R.

Let us now consider some examples in a nonpara-
metric framework. More precisely, we will recall the
results of Brown and Low (1996) and Nussbaum (1996)
that are the first asymptotic equivalence results for non-
parametric experiments.
Example 4.5. In Brown and Low (1996), the authors
consider the problem of estimating the function f from
a continuously observed Gaussian process y(t), t ∈ [0, 1],
which satisfies the SDE

dyt = f(t)dt+ σ(t)√
n
dWt, t ∈ [0, 1],

where dWt is a Gaussian white noise. They find that the
statistical model associated with the continuous obser-
vation of (yt) is asymptotically equivalent to the stat-
istical model associated with its discrete counterpart,
i.e. the nonparametric regression:

yi = f(ti) + σ(ti)ξi, i = 1, . . . , n.

The time grid is uniform, ti = i−1
n , and the ξi’s are

standard normal variables; they assume that f varies
in a nonparametric subset F of L2[0, 1] defined by some
smoothness conditions and n tends to infinity not too
slowly. More precisely, the drift function f(·) is un-
known and such that, for B a positive constant, one
has:

sup
{
|f(t)| : t ∈ [0, 1], f ∈F

}
= B <∞.

Moreover, defining

f̄n(t) =
{
f
(
i
n

)
if i−1

n ≤ t < i
n , i = 1, . . . , n;

f(1) if t = 1;

one asks:

lim
n→∞

sup
f∈F

n
∫ 1

0

(f(t)− f̄n(t))2

σ2(t) dt = 0.

The diffusion coefficient σ2(·) > 0 is supposed to be
a known absolutely continuous function on [0, 1] such
that ∣∣∣∣ ddt ln σ(t)

∣∣∣∣ ≤ C, t ∈ [0, 1],

for some positive constant C.
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Example 4.6. In Nussbaum (1996) the author estab-
lishes a global asymptotic equivalence between the prob-
lem of density estimation from an i.i.d. sample and a
Gaussian white noise model. More precisely, let (Yi)ni=1
be i.i.d. random variables with density f(·) on [0, 1]
with respect to the Lebesgue measure. The densities
f(·) are the unknown parameters and they are supposed
to belong to a certain nonparametric class F subject
to a Hölder restriction: |f(x)− f(y)| ≤ C|x− y|α with
α > 1

2 and a positivity restriction: f(x) ≥ ε > 0. Let
us denote by P1,n the statistical model associated with
the observation of the Yi’s. Furthermore, let P2,n be
the experiment in which one observes a stochastic pro-
cess (yt)t∈[0,1] such that

dyt =
√
f(t)dt+ 1

2
√
n
dWt, t ∈ [0, 1],

where (Wt)t∈[0,1] is a standard Brownian motion. Then
the main result in Nussbaum (1996) is that ∆(P1,n,P2,n)→
0 as n→∞. This is done by first showing that the res-
ult holds for certain subsets Fn(f0) of the class F de-
scribed above. Then it is shown that one can estimate
the f0 rapidly enough to fit the various pieces together.
Without entering into any detail, let us just mention
that the key steps are a Poissonization technique and
the use of a functional KMT inequality.

In the last years, asymptotic equivalence results have
also been established for discretely observed stochastic
processes. As an example, let us present the result in
Mariucci (2015), very close in spirit to the one of Brown
and Low (1996).
Example 4.7. Let {Xt}t≥0 be a sequence of time in-
homogeneous jump-diffusion processes defined by

Xt = η+
∫ t

0
f(s)ds+εn

∫ t

0
σ(s)dWs+

Nt∑
i=1

Yi, t ∈ [0, T ],

where:
• η is some random initial condition;
• W = {Wt}t≥0 is a standard Brownian motion;
• N = {Nt}t≥0 is an inhomogeneous Poisson process
with intensity function λ(·), independent of W ;
• (Yi)i≥1 is a sequence of i.i.d. real random variables
with distribution G, independent of W and N ;
• σ2(·) is supposed to be known. The horizon of
observation T is finite and εn → 0 as n→∞.
• f(·) belongs to some non-parametric class F .
• λ(·) and G are also unknown and belong to non-
parametric classes Λ and G , respectively.

In Mariucci (2015), the problem of estimating f from
high frequency observations of {Xt}t≥0 is considered.
More precisely, we suppose to observe {Xt}t≥0 at dis-
crete times 0 = t0 < t1 < · · · < tn = T such that
∆n = max1≤i≤n

{
|ti − ti−1|

}
↓ 0 as n goes to infinity.

Let Pn be the statistical model associated with the
continuous observation of {Xt}t∈[0,T ] and Qn the one
associated with the observations (Xti)ni=0. Finally, let
Wn be the Gaussian white noise model associated with
the continuous observation of the Gaussian process

dyt = f(t)dt+ εnσ(t)dWt, y0 = η, t ∈ [0, T ].
Suppose that F is a subclass of α-Hölder, uniformly
bounded functions on R and the nuisance parameters
σ(·) and λ(·) satisfy the following conditions:
• There exist two constants m andM such that 0 <
m ≤ σ(·) ≤ M < ∞ and σ(·) is derivable with
derivative σ′(·) in L∞(R).
• There exists a constant L < ∞ such that for all
λ ∈ Λ, ‖λ‖L2([0,T ]) < L.

Then, under the assumption that ∆2α
n ε
−2
n → 0 as n →

∞, the three models Pn, Qn and Wn are asymptotic-
ally equivalent. A bound for ∆(Qn,Wn) and ∆(Pn,Qn)
is given by

∆β/2
n + T∆2α

n ε
−2
n + T∆n,

where β = 1 if G is a subclass of discrete distributions
with support on Z and β = 1/2 if G is a subclass of
absolutely continuous distributions with respect to the
Lebesgue measure on R with uniformly bounded dens-
ities on a fixed neighborhood of 0. In particular, this
result tells us that the jumps of the process {Xt}t≥0 can
be ignored when the goal is the estimation of the drift
function f(·). Moreover, the proof is constructive: an
explicit Markov kernel is constructed to filter the jumps
out.

5 Density estimation problems and Gaussian
white noise models: A constructive proof

In this Section, following Carter (2002) (see p. 720-
725), we will detail how one can prove, in a construct-
ive way, the asymptotic equivalence between a density
estimation problem and a Gaussian white noise model,
as presented in Example 4.6. However, with respect to
the work of Nussbaum (1996), we will ask some stronger
hypotheses on the parameter space in order to simplify
the proofs. More precisely, for fixed γ ∈ (0, 1] and
K, ε,M strictly positive constants, we will consider a
functional parameter space of the form

F(γ,K,ε,M) =
{
f ∈ C1(I) : ε ≤ f(x) ≤M,

|f ′(x)− f ′(y)| ≤ K|x− y|γ , ∀x, y ∈ [0, 1]
}
.

As in Example 4.6, P1,n will be a density estimation
problem:

(Yi)1≤i≤n i.i.d. r.v. with density f ∈F(γ,K,ε,M) (5.1)
and P2,n a Gaussian with noise model:

dyt =
√
f(t)dt+ 1

2
√
n
dWt, t ∈ [0, 1], f ∈F(γ,K,ε,M).
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The idea of Carter was to use the bound on the distance
between multinomial and Gaussian normal variables
as presented in Example 4.2 to make assertions about
density estimation experiments. The intuition is to see
the multinomial experiment as the result of grouping in-
dependent observations from a continuous density into
m subsets, say Ji, i = 1, . . . ,m. Using the square root
as a variance-stabilizing transformation, these multi-
nomial variables can be asymptotically approximated
by m normal variables with constant variances. These
normal variables, in turn, are approximations to the
increments of the process (yt) over the sets Ji. In Sub-
section 5.1 we will analyze how to obtain a asymptot-
ically equivalent multinomial experiment starting from
P1,n. Assuming the results of Carter stated here as
Theorems 4.3 and 4.4 we will then obtain a bound of
the ∆-distance between such a multinomial experiment
and one associated with independent Gaussian random
variables. In Subsection 5.2 we will explain how to show
the asymptotic equivalence between an adequate nor-
mal approximation with independent coordinates and
P2,n.

5.1 Density estimation problems and
multinomial experiments

Let us consider a partition of [0, 1] in m intervals Ji =
[(i−1)/m, i/m] and denote by S : [0, 1]n → {1, . . . , n}m
the application mapping the n-tuple (x1, . . . , xn) to the
m-tuple (#{j : xj ∈ J1}, . . . ,#{j : xj ∈ Jm}), where
the writing #{j : xj ∈ Ji} stands for the number of
xj belonging to the interval Ji. Let P⊗nf be the law
of (Y1, . . . , Yn) as in (5.1). The law of S under P⊗nf
is a multinomial distribution M (n; θ1, . . . , θm), θi =∫
Ji
f(x)dx, i = 1, . . . ,m. In particular this means that

an appropriate multinomial experiment is more inform-
ative than P1,n. More precisely, we have proven that
the statistical model associated with the multinomial
distribution (M (n; θ1, . . . , θm) : f ∈ F ), denoted by
Pm, is such that δ(P1,n,Pm) = 0.

Let us now investigate the quantity δ(Pm,P1,n). A
trivial observation is that the total variation distance
between the multinomial distribution M (n; θ1, . . . , θm)
and the law P⊗nf is always 1, hence, in order to prove
that δ(Pm,P1,n) → 0 we need to construct a non
trivial Markov kernel. We will divide the proof in three
main steps.

Step 1: We denote by x∗i the midpoints of the in-
tervals Ji, i.e. x∗i = 2i−1

2m , and we introduce a discrete
random variable X∗ concentrated at the points x∗i with
masses θi. Let us then denote by P∗ the statistical
model associated with the observation of n independ-
ent realizations of X∗. Then, by means of a “sufficient
statistic” argument we can get ∆(Pm,P∗) = 0. In-
deed, consider the application

S : {x∗1, . . . , x∗m}n → {1, . . . , n}m

mapping (y1, . . . , yn) to

(#{j : yj = x∗1}, . . . ,#{j : yj = x∗m})

and observe that the density h of the law of n inde-
pendent realizations of X∗ with respect to the counting
measure is given by

h(y1, . . . , yn) =
n∏
i=1

P(X∗ = yi)

= θ
#{j:yj=x∗

1}
1 × · · · × θ#{j:yj=x∗

m}
m .

By means of the Neyman-Fisher factorization theorem,
we conclude that S is a sufficient statistic, thus
∆(Pm,P∗) = 0.

Step 2: Starting from n realizations of X∗ we want
to obtain something close to n independent realizations
of Pf , the law of Y1 as in (5.1). To that aim we define
an approximation of f as follows:

f̂m(x) =
m∑
j=1

Vj(x)θj ,

where Vj ’s are piecewise linear functions interpolating
the values in the points x∗j as in Figure 1.

In particular, f̂m is a piecewise linear function that
can be written as

f̂m(x) =


mθ1I[0,x∗

1](x), if i = 1,(
m−m2|x− x∗i |

)
I[x∗

i ,x
∗
i+1](x) if 1 < i < m,

mθmI[x∗
m,1](x), if i = m.

We then consider the Markov kernel

M(k,A) =
m∑
j=1

I{x∗
j}(k)

∫
A
Vj(y)dy,

for all k in N and A in B([0, 1]). Denoting by P ∗ the
law of the random variable X∗, we have

MP ∗(A) =
∑
k∈N

M(k,A)P(X∗ = k) =
m∑
i=1

θiM(x∗i , A)

=
m∑
i=1

θi

∫
A
Vi(y)dy =

∫
A
f̂m(y)dy.

Let P̂m be the statistical model associated with the
observation of n i.i.d. random variables (Ŷi)1≤i≤n hav-
ing f̂m as a density with respect to the Lebesgue meas-
ure on [0, 1]. Applying Remark 2.9 we get δ(P∗, P̂m) =
0.

Step 3: We are only left to check that δ(P̂m,P1,n)→
0. This is actually the case and we can show that

∆(P1,n, P̂m) = O

(√
n
(
m−3/2 +m−1−γ

))
.

Indeed, the total variation distance between the family
of probabilities associated with the experiments P1,n
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Fig. 1: The definition of the Vj functions.
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and P̂m is bounded by
√
nH(f, f̂m). Since f(x) ≥ ε

for all x ∈ [0, 1] one can write:

H2(f, f̂m) =
∫ 1

0

(
f(x)− f̂m(x)√
f(x) +

√
f̂m(x)

)2

dx

≤ 1
4ε

∫ 1

0

(
f(x)− f̂m(x)

)2
dx.

In order to control the L2 distance between f and
f̂m we will split

∫ 1
0

(
f(x)− f̂m(x)

)2
dx as follows:∫ 1

0

(
f(x)− f̂m(x)

)2
dx =

∫ 1/2m

0

(
f(x)−mθ1

)2
dx

+
∫ 1−1/2m

1/2m

(
f(x)− f̂m(x)

)2
dx

+
∫ 1

1−1/2m

(
f(x)−mθm

)2
dx.

An application of the mean theorem allows us to de-
duce

∫
Ji

(
f(x) −mθi

)2
dx = O(m−3), i = 1, . . . ,m. To

control the term
∫ 1−1/2m
1/2m

(
f(x)− f̂m(x)

)2
dx, let us con-

sider the Taylor expansion of f at points x∗i , where x
denotes a point in Ji , i = 2, . . . ,m− 1:

f(x) = f(x∗i ) + f ′(x∗i )(x− x∗i ) +Ri(x). (5.2)

The smoothness condition on f allows us to bound the
error Ri as follows:

|Ri(x)| =
∣∣∣∣f(x)− f(x∗i )− f ′(x∗i )(x− x∗i )

∣∣∣∣
=
∣∣∣f ′(ξi)− f ′(x∗i )∣∣∣|ξi − x∗i | ≤ Km−1−γ , (5.3)

where ξi is a certain point in Ji.
By the linear character of f̂m, we can write:

f̂m(x) = f̂m(x∗i ) + f̂ ′m(x∗i )(x− x∗i )

where f̂ ′m denotes the left or right derivative of f̂m in x∗i
depending whether x < x∗i or x > x∗i . Let us observe
that f̂ ′m(x∗i ) = f ′(χi) for some χi ∈ Ji ∪ Ji+1 (here,

we are considering right derivatives; for left ones, this
would be Ji−1 ∪ Ji), indeed:

f̂ ′m(x∗i )
= −m(f̂m(x∗i )− f̂m(x∗i+1))

= −m2
(∫ i

m

i−1
m

f(s)ds−
∫ i+1

m

i
m

f(s)ds
)

= m2
∫ i

m

i−1
m

(
f(s+ 1/m)− f(s)

)
ds = m

∫
Ji
f ′(ξs)ds

for some ξs ∈ [s, s+ 1/m]. Applying the mean theorem
to the function g(s) = f ′(ξs) we get that

∫
Ji
f ′(ξs)ds =

1
mf
′(t) for some t ∈ Ji ∪ Ji+1. The fact that f̂ ′m(x∗i ) =

f ′(t), allows us to exploit the Hölder condition. Indeed,
if x ∈ Ji, i = 1, . . . ,m, then there exists t ∈ Ji ∪ Ji+1
such that:

|f(x)− f̂m(x)| ≤ |f(x∗i )− f̂m(x∗i )|
+ |f ′(x∗i )− f ′(t)||x− x∗i |+ |Ri(x)|
≤ |f(x∗i )− f̂m(x∗i )|+K|t− x∗i ||x− x∗i |γ

+Km−1−γ

≤ |f(x∗i )− f̂m(x∗i )|+ 3Km−1−γ .

Using (5.2) and the fact that
∫
Ji

(x−x∗i )dx = 0, we get:
∣∣∣f(x∗i )−f̂m(x∗i )

∣∣∣ = m

∣∣∣∣∣
∫
Ji

(
f(x∗i )−f(x)

)
dx

∣∣∣∣∣ ≤ Km−1−γ .

Collecting all the pieces together we find∫ 1

0

(
f(x)− f̂m(x)

)2
dx = O

(
m−3 +m−2γ−2

)
,

hence we can conclude that

∆(P1,n, P̂m) = O
(√

n(m−3/2 +m−1−γ)
)
.

5.2 Independent Gaussian random variables
and Gaussian white noise experiments

In Subsection 5.1 we have seen how to reduce a density
estimation problem to an adequate multinomial exper-
iment. An application of the results of Carter (2002)
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recalled in Example 4.2 allows us to obtain an asymp-
totic equivalence between the statistical model asso-
ciated with the observation of n i.i.d. random vari-
ables of density f : [0, 1] → R with respect to the
Lebesgue measure and an experiment in which one ob-
servesm = mn Gaussian and independent random vari-
ables N (

√
θi, 1/4n), i = 1, . . . ,m. Of course, such a

Gaussian experiment is equivalent to Nm, the statist-
ical model associated with independent Gaussian ran-
dom variables N

(√
θi
m ,

1
4nm

)
, i = 1, . . . ,m. We claim

that Nm is asymptotically equivalent to the white noise
model P2,n associated with the continuous observation
of a trajectory of a Gaussian process (yt)t∈[0,1] solution
of the SDE:

dyt =
√
f(t)dt+ 1

2
√
n
dWt, t ∈ [0, 1], (5.4)

where (Wt)t is a standard Brownian motion. We will di-
vide the proof in two steps. Denote by N ∗

m the statist-
ical model associated with the observation of (yt)t over
the intervals Ji, i = 1, . . . ,m, i.e. N ∗

m is the experiment
associated with m independent Gaussian random vari-
ables N

( ∫
Ji

√
f(s)ds, 1

4nm

)
, i = 1, . . . ,m. Firstly, we

will show that Nm is asymptotically equivalent to N ∗
m ,

then that observing (yt)t is asymptotically equivalent
to observing its increments.

Step 1: By means of Property 3.5 we get

∆(Nm,N
∗
m ) ≤

√
2mn

√√√√ m∑
i=1

(∫
Ji

√
f(t)dt−

√
θi
m

)2

=
√

2n

√√√√ m∑
i=1

1
m

(
m
∫
Ji

(√
f(t)−

√
mθi

)
dt

)2

Denote by Ei = |m
∫
Ji

(√
f(t) −

√
mθi

)
dt|. By the

triangular inequality, we bound Ei by Fi +Gi where:

Fi =
∣∣∣∣∣√mθi−√f(x∗i )

∣∣∣∣∣ and Gi =
∣∣∣∣∣√f(x∗i )−m

∫
Ji

√
f(y)dy

∣∣∣∣∣.
Using the same trick as in Step 3 of Subsection 5.1, we
can bound:

Fi = |mθi − f(x∗i )|√
mθi +

√
f(x∗i )

≤ |mθi − f(x∗i )|
2
√
ε

= m

2
√
ε

∣∣∣∣ ∫
Ji

(
f(s)− f(x∗i )

)
ds

∣∣∣∣ ≤ 1
2
√
ε
‖Ri‖∞,

where we have used the fact that
∫
Ji

(x − x∗i ) = 0 and
Ri denotes the remainder in the Taylor expansion of f

in x∗i , as in (5.2). On the other hand,

Gi = m

∣∣∣∣∣
∫
Jj

(√
f(x∗i )−

√
f(y)

)
dy

∣∣∣∣∣
= m

∣∣∣∣∣
∫
Ji

(
f ′(x∗i )

2
√
f(x∗i )

(x− x∗i ) + R̃i(y)
)
dy

∣∣∣∣∣ ≤ ‖R̃i‖∞,
where R̃i is the remainder in the Taylor expansion of√
f in x∗i . We observe that if f belongs to the functional

class F(γ,K,ε,M) then
√
f is still bounded away from

zero and from infinity with a Hölder continuous deriv-
ative, more precisely

√
f ∈F(γ,K/

√
ε,
√
ε,
√
M). In partic-

ular, we deduce that ‖R̃i‖∞ has the same magnitude
as
√

M
ε ‖Ri‖∞. Thanks to (5.3) we know that ‖Ri‖∞ ≤

Km−1−γ for any i = 2, . . . ,m−1 and ‖Ri‖∞ = O(m−3/2)
for i ∈ {1,m}. Hence the quantities Fi and Gi are of
the same order and we find that

∆(Nm,N
∗
m ) = O

(√
n
(
m−1−γ +m−

3
2
))
.

Step 2: Since N ∗
m is the model associated with the

observation of the increments (Ȳi)1≤i≤n of the process
(yt)t defined as in (5.4) it is clear that δ(P2,n,N ∗

m ) = 0.
Let us now discuss how to bound δ(N ∗

m ,P2,n). We
start by introducing a new stochastic process:

y∗t =
m∑
i=1

Ȳi

∫ t

0
Vi(y)dy + 1

2
√
nm

m∑
i=1

Bi(t), t ∈ [0, 1],

where the functions Vi are defined as in Figure 1 and
Bi(t) are independent centered Gaussian processes in-
dependent of (Wt) and with variances

Var(Bi(t)) =
∫ t

0
Vi(y)dy −

(∫ t

0
Vi(y)dy

)2

.

These processes can be constructed from a standard
Brownian bridge B(t), independent of (Wt), via

Bi(t) = B

(∫ t

0
Vi(y)dy

)
.

By construction, (y∗t ) is a Gaussian process with mean
and variance given by, respectively:

E[y∗t ] =
m∑
i=1

E[Ȳi]
∫ t

0
Vi(y)dy

=
m∑
i=1

(∫
Ji

√
f(y)dy

)∫ t

0
Vi(y)dy,

Var[y∗t ] =
m∑
i=1

Var[Ȳi]
(∫ t

0
Vi(y)dy

)2

+ 1
4nm

m∑
i=1

Var(Bi(t))

= 1
4nm

∫ t

0

m∑
i=1

Vi(y)dy = t

4n.
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One can compute in the same way the covariance of
(y∗t ) and deduce that

Y ∗t =
∫ t

0

√̂
f
m

(y)dy +
∫ t

0

1
2
√
n
dW ∗s , t ∈ [0, 1],

where (W ∗t ) is a standard Brownian motion and√̂
f
m

(x) :=
m∑
i=1

(∫
Ji

√
f(y)dy

)
Vi(x).

Applying Fact 3.5, we get that the total variation
distance between the process (y∗t )t∈[0,1] constructed from
the random variables Ȳi, i = 1, . . . ,m and the Gaussian
process (yt)t∈[0,1] is bounded by√

4n
∫ 1

0

(√̂
f
m

(y)−
√
f(y)

)2
dy.

Since f ∈F(γ,K,ε,M) implies
√
f ∈F(γ,K

√
M/
√
ε,
√
ε,
√
M),

the same kind of computations made in Step 3 of Sub-
section 5.1 allows us to conclude that

∆(N ∗
m ,P2,n) = δ(N ∗

m ,P2,n) (5.5)
= O

(√
n
(
m−3/2 +m−1−γ

))
.

5.3 The choice of m
In Subsection 5.1 we have proven that the cost needed
to pass from the model associated to the observation
of n i.i.d. random variables with unknown density f ∈
F(γ,K,ε,M) to an adequate multinomial approximation
M(n; θ1, . . . , θm) is of the order of

√
n
(
m−3/2+m−1−γ

)
.

Using Theorem 4.3 we can take a further step obtaining
a Gaussian approximation (with independent coordin-
ates) starting from the multinomial one. This comes
to the price of m lnm√

n
. Finally, in Subsection 5.2 we

have found that for appropriate choices of m there is
an asymptotic equivalence between such a Gaussian ap-
proximation and the Gaussian with noise model P2,n.
A bound for the rate of convergence of the ∆-distance
up to constants is, again, given by

√
n
(
m−3/2+m−1−γ

)
.

In particular we deduce that

∆(P1,n,P2,n) =

O
(
n
− γ

2(γ+2) log n
)
, if0 < γ ≤ 1

2 ,

0(n− 1
10 log n) if 1

2 < γ ≤ 1.

after the choice m = n1/(2+γ).
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