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Abstract

We review the topological approach to evasiveness in [5], study the
sizes of automorphism groups of graphs, and use this to estimate the
Euler characteristic of the simplicial complex associated to a nontrivial
graph property P on 6 vertices. Based on these estimates, we give an
alternative proof of the evasiveness conjecture in the 6 vertices case,
different from the given in [B]. The condition of being nonevasive
implies that the Euler characteristic of these simplicial complexes is
1, and our estimate of x(P) obligates P to contain some classes of
special graphs. The use of Oliver groups (as in [5]) is essential to deal
with the different cases that appear.
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1 Introduction

In this paper we consider only simple graphs on the
fixed set of n vertices V. = {1,2,...,n}. A graph
G = (V, E) is thus determined by its edge set E C (V),
which allows us to identify G' with E. Two graphs
G = (V,E) and ' = (V,E’) on vertices V are iso-
morphic if there is a permutation o of V', i.e. o € S,,,
such that {i,j} € F if and only if {o(i),0(j)} € E'. A
graph property 77 is a collection of graphs, or a family
of subsets of which is closed under isomorphism of
graphs: namelzy, a graph G is in P if and only if any
graph G’ isomorphic to G is also in P.

Now consider the following game in which there are
two players X and Y, there is a graph property P that
both X and Y know, and a graph G that only X knows.
The goal of Y is to determine whether the graph G is in
P; player Y is allowed to ask X questions of the form
“is the edge {i,7} in G?”, which X answers truthfully
yes or no. The game ends when Y has determined if G
is in P or not. A strategy for Y is an algorithm that,
depending on the answer player X gives at each stage of
the game, assigns an edge for asking the next question,
or if possible, gives one of the answers, “G isin P” or “G
is not in P” (ending the game). The minimal number
k for which there is a strategy for player Y such that

regardless of the graph G and the answers of player X,
player Y can always end the game by asking at most &k
questions, is the complezity ¢(P) of the graph property
P. This says that there is a strategy for Y such that
Y can always reach his goal by asking at most c¢(P)
questions, but there is some extreme case (the “worst
case”) in which exactly ¢(P) questions are required for
ending up the game. We have that ¢(P) < (). In the

extreme case that c(P) = (3), we say that the property
P is ewvasive, otherwise we say P is nonevasive.

For example, let us fix V' = {1,2,3} so that e; =
{1,2},e5 = {1,3} and e = {2, 3} are all possible edges
graphs on 3 vertices can have. Let P be the property
“having exactly one edge”. This is a graph property
consisting of exactly three graphs (one isomorphism
class). The first question in our strategy can be “is
e; in G?7”, and suppose the answer to this question is
yes. At this point we know that the (unknown) graph
G has at least one edge, but it is impossible for us to
know if any other edge is in G or not. We are forced to
ask, say, “is eo in G?7”. If the answer to this question is
yes, then the game ends. But let us think of the worst
case, that is, the answer to that question is no. Because
we do not know if e3 is in (G, and there is no way of
knowing but asking for it, we are forced to ask the third
question. In fact, for any strategy, there is some “worst
case” in which all 3 questions have to be asked in order
to finish the game. Thus, this property P is evasive.

Few graph properties are known to be nonevasive.
For example, the property P consisting of all graphs on
six vertices isomorphic to one of the graphs shown in
figure [1|is nonevasive (see [6] for more examples). A fa-
mous example is the property of being a scorpion graph
(see [1,[6]), defined for n > 5 and that has complexity
< 6n — 13, so that for n > 11 it is nonevasive.

We say a graph property P is monotone if it is closed
under removal of edges. The property P is called triv-

tal if it is either empty or is the family of all subsets of
(V). otherwise P is called nontrivial. The evasiveness
conjecture or Karp’s conjecture asserts that every non-

trivial monotone graph property is evasive.
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Fig. 1: A non-evasive graph property.

It was conjectured in [I1] that there is a constant
e > (0 such that any nontrivial monotone digraph prop-
erty on n vertices has complexity at least en?. This
statement, known as the Aanderaa-Rosenberg conjec-
ture, was proven in [I10]. Karp’s conjecture is a very
strong version of this conjecture (see [11]). Karp’s con-
jecture is the starting point for the work of Kahn, Saks
and Sturtevant [5], along with the fact that the conjec-
ture was known to be true for many specific graph prop-
erties. In [5], an ingenious connection was established
between topology and this complexity problem, which
enabled Kahn, Saks and Sturtevant to give a proof of
Karp’s conjecture for the prime power case. They also
prove the six vertices case by using this topological ap-
proach. Karp’s conjecture is proven in [I5] by A. C.-C.
Yao for bipartite graph properties. Yao’s proof is based
on this topological approach.

Besides the results in [5] and [I5], there are plenty of
families of nontrivial monotone graph properties which
are known to be evasive (see for example [4]). The
techniques used are based mainly on the topological
approach, in particular on discrete Morse theory (see

2], ).

2 Review of the Topological Approach

Let V be a finite set. An (abstract) simplicial complex
on V is a collection K of non-empty subsets of V' such
that

(1) {v} € K for all v € V and
(1i) A€ K and B C A implies B € K.

If A € K we say that A is a face or a simpler of K,
and |A| — 1 is the dimension of A (dimA). If the whole
set of vertices V is a face of K we say that K is a
simplez, that is, K consists of all subsets of V. The
automorphism group of K, Aut(K), is the collection of
all permutations of V' which leave K invariant. There
is a topological space associated to K, |K|, called the
geometric realization of K;if V.= {vy, vy, ..., v,}, iden-
tifying v; with the standard basis vector e; € R", | K] is
the subspace of R™ obtained as the union of all convex
hulls (A) = conv{e; : v; € A} for A € K. If K has

Fig. 2: Collapsing a simplicial complex to a vertex.

fi faces of dimension 4, then the Euler characteristic of
K, x(K), is defined as

X(K)=>_(-1)'f:.

>0

If T is a subgroup of Aut(K), then I" acts on |K| by
extending linearly the action on vertices, and we write
|K|! for the fixed points of this action. The space |K|"
can be described in an abstract way as follows: define
K" to be a simplicial complex such that

(1) the vertices of KT are the orbits of the action of
I' on V that are also faces of K and

(i1) if Ay, As, ..., A, are vertices of KT then

{A17A27 s 7A7’}

is a face of KT if AJjUAsU---UA, is a face of K.

If we identify each vertex A; of Kt with the barycen-
ter of |4;| in |K|, then the geometric realization of K*
is just |K|'.

A free face of K is a nonempty face A of K such
that it is not maximal under inclusion in K, but it
is contained in exactly one inclusion maximal face B
of K, where we require that dimB = dimA + 1. An
elementary collapse of K consists of the removal of a
free face along with the maximal face containing it. We
say that K collapses to a complex K’, and denote this
by K N\, K', if K’ can be obtained from K by a sequence
of elementary collapses and say that K is collapsible if
it collapses to a complex consisting of a single vertex.

We assume as known some concepts from algebraic
topology such as singular and simplicial homology, con-
tractibility of spaces, etc. We also make use of the fol-
lowing definition: K is called T'-acyclic if its reduced
homology with coefficients in I" is trivial. We have the
following sequence of implications: K is collapsible =
K is contractible = K is Z-acyclic = K is Z/p-
acyclic for every prime p.

For a vertex v we define the link of v, lkk(v) as
the simplicial complex on vertices V \ {v} given by
lkx(v) ={ACV\{v}: Au{v} € K}. We also define
the deletion of v, delk(v) as the simplicial complex on
V\ {v} given by delg(v) = {A CV \{v}: A€ K}.
Finally we define the (Alexander) dual of K, K*, as the
complex on V given by K*={ACV: V\A¢K}.

The concept of evasiveness can be defined for sim-
plicial complexes as follows: just as before there is a
game, two players X and Y, a simplicial complex K
which is known to both X and Y, and a subset A of V'
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The complex K lkk (7)

4
5

delk (7)

Fig. 3: Link and deletion of a vertex.

known only to X. Player Y has to determine if A is in
K by asking questions of the form “is the verter v in
A?” As before we can define the complexity of K, and
call K evasive, if its complexity equals the size of V|
otherwise call K nonevasive. The dual of a nonevasive
complex is again nonevasive, for determining whether
Ais in K is equivalent to determining whether V'\ A is
not in K*. We can regard a nonempty monotone graph
property P on n vertices as an abstract simplicial com-
plex AP as follows: the set of vertices of AP is the
set of two-element subsets of V' = {1,2,... n} (that is,
the set of all possible edges {7,7}, 1 <i < j <n), and
the simplices of AP are the collections of such edges
that correspond to graphs belonging to P. Thus, sim-
plices of AP of dimension k correspond to graphs in P
having k 4+ 1 edges. By abuse of notation we denote
both the monotone graph property and the associated
simplicial complex by P. Note that the two concepts of
evasiveness defined for properties of graphs P coincide.

The result that relates the complexity problem to
topology is the following.

Theorem 2.1 (Kahn-Saks-Sturtevant, [5]). A noneva-
stve complex is collapsible.

Proof. Let K be a nonevasive complex on a set of n ver-
tices V. Then there is a strategy for player Y in which
not all n vertices have to be asked in order to deter-
mine if a (unknown subset) A C V' is in K or not. This
strategy starts with some vertex vy. Now, determining
whether A is in K is equivalent to determining whether
one of the following holds: A\ {wo} is in kg (vg) or
AN\ {w} is in delk(vg). Thus, we have that either of
these two queries on A\ {vgp} can be determined by ask-
ing less than n — 1 questions, that is, both lkx (vy) and
delk (vp) are nonevasive complexes. An induction argu-
ment applies. Assuming that the theorem is true for all
nonevasive complexes on n — 1 vertices, then Ik (vp)
and delg (vg) are collapsible. If a sequence of free faces
Ay, Ag, ..., Ay, permits collapsing (kg (vg) to a vertex
x, then the sequence A1 U{vo}, AoU{vo},..., AnU{ve}
permits collapsing K to delk (vg), and since delk (vg) is
collapsible, then so is K.

Remark 2.1. In the proof of theorem we showed
that if K is nonevasive, then there exists some vertex
v € V such that both lkk (vg) and delk (vg) are noneva-
sive complexes. This can be used to give an equivalent
inductive definition of a nonevasive complex. Define a
simplicial complex K as nonevasive if it consists of a
single vertex or if there exists some vertex vy € V such
that both lkx (vo) and delk (vg) are nonevasive. Theo-
rem is true if we adopt this inductive definition of
a nonevasive complex.

Corollary 2.2. A nonevasive complex is Z-acyclic.

The next ingredient for giving the proof of Karp’s
conjecture in the prime power case is the action of the
group Aut(K). We use the following result of R. Oliver
(see [9)):

Theorem 2.3 (Oliver, [9]). Let K be a simplicial com-
plez, T' be a finite subgroup of Aut(K) and p be a fized
prime. Assume that

i) |K| is Z/p-acyclic and

1) I' has a normal p-subgroup T'y such that the quotient
I'/T'y is eyclic.

Then x(|K|Y) = 1. In particular, |K|' is nonempty.

We call a group I satisfying condition ii) in theorem
an Oliver group. For example, all finite p-groups
are Oliver groups.

Lemma 2.4. Let K be a nonempty Z-acyclic complex
on'V and T be a vertex-transitive subgroup of Aut(K).
If T is an Oliver group, then K is a simplez.

Proof. We claim that there is a face A of K which is
invariant under I'. A face A is invariant under I" if and
only if, regarding I" acting on | K|, there is some point
x in the relative interior of |A| fixed by I'. As I' is an
Oliver group, we know from Theorem that there is
a point x in |K| fixed by I'. Take A to be the unique
face of K such that x is in the relative interior of |A].
Since I' acts transitively on V, A = V and so K is a
simplex. O

Theorem 2.5 (Kahn-Saks-Sturtevant, [5]). The eva-
siveness conjecture is true if |V| = p” is a power of a
prime, that is, every nontrivial and monotone property
of graphs on p" wertices, is evasive.

Proof. Let |V| = p" be a prime power and P be a
nonempty monotone and nonevasive graph property on
vertices V. Identify V' with the finite field GF(p") and
consider the group I' of all affine transformations ¢, :
GF(p") = GF(p"), x — ax + b, for fixed a,b GF(p"),
a # 0. This group I' acts doubly transitively on V,
that is, I' acts transitively on the set of ordered pairs
of elements of V' and so it acts transitively on the set
of unordered pairs. We are just saying that I' is a
vertex-transitive subgroup of Aut(P). The group I'
has a normal p-subgroup I'y = {¢1p : b € GF(p")}
with quotient I'/T'y =2 GF(p")* (the nonzero elements
of GF(p")), which is known to be cyclic. Thus I' is an
Oliver group. Lemma ends the proof, because P
has to be the simplex on V, that is, P is trivial. O
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3 Euler Characteristic and Automorphisms of
Graphs

If P is a nonempty monotone and nonevasive graph
property, then P, considered as a simplicial complex is
collapsible and this implies that y(P) = 1. Therefore,
if x(P) # 1, then P, being monotone and nontrivial, is
evasive. This suggests the idea of examining the Euler
characteristic of monotone graph properties of graphs
on n vertices.

For a given graph G on n vertices let [G] denote its
isomorphism class and for any pair of graphs G, H on
n vertices let us write [G] < [H] if and only if G is
isomorphic to some subgraph of H. We can write the
Euler characteristic x(P) as

X(P)= > (=" G,

[GICP

where P is supposed to be nonempty, m¢g represents
the number of edges of the graph G (so that G corre-
sponds to a face of dimension m¢g — 1 of the simplicial
complex P), |[G]] is the size of the isomorphism class
[G] and the sum is taken over all isomorphism classes of
graphs contained in P. The idea is that in many cases
there is a common divisor d > 1 of all the sizes |[G]| for
G € P and, as a result, d divides x(P); consequently
X(P) # 1 and we conclude that P is evasive.

In order to study the divisors of |[G]|, we observe

that |[G]| = M#éc‘)w where Aut(G) is the subgroup of

Sy, that leaves G invariant (the automorphism group of
G). So we investigate the divisors of |Aut(G)|.

For each graph GG on n vertices we have its complement
G = (‘2/) \ G and given a monotone graph property P
we have its dual P* = {G: G ¢ P} ={G: G ¢ P}.
We also have that Aut(G) = Aut(G).

A permutation group I" of degree m is a subgroup of
Sm. For permutation groups I'1 of degree m; acting on
the set Vi3 = {1,2,...,my} and I'y of degree my act-
ing on Vo = {1,2,...,ms}, we can describe the wreath
product I'1 11" as the permutation group with elements
represented by (01,...,0m,,0) for 0; € I'y and o € Ty,
acting on Vi x V4 by the rule (o1,...,0m,,0) - (4,)) =
(0(i),04(j)). The size of ') 1 'y is || - |T'1|™2. For the
following basic result see [3], chapter 14.

Lemma 3.1. Let G be a graph on n vertices, then the
group Aut(G) decomposes as

Aut(G) = (Aut(G1) 1 Sp,) X X (Aut(Gs) 1 Sy,)

where the G;’s are the distinct connected components of
G and n; is the number of components of G isomorphic
to G;. Let m; be the number of vertices of G; so that
n = nimy + nems + - -+ + ngms and Aut(G;) is iso-
morphic to a subgroup of Sp,,. Then |Aut(G)| divides

Let 2K3 be the graph on 6 vertices consisting of the
union of two disjoint copies of the graph K3 = Cjs (a
3-cycle graph). In this case s = 1,m; = 3,n7 = 2, then
Aut(2K3) = Aut(Cs) 1S3 = S30.S2. For the graph 3K5
we have that Aut(3K3) = Aut(K3) 1S3 = Sy S3, in
particular |Aut(3K,)| = 3! - 23.

Lemma 3.2. Suppose that a graph G on n vertices has
exactly k vertices of a given degree r, where 0 < k < n.
Then Aut(G) is isomorphic to a subgroup of Sk, X Sp—.
In particular (7)) divides |[G]|.

This is just because every element of Aut(G) pre-
serves the set of vertices of degree r and also preserves
the set of vertices that are not of degree r. Then
|Aut(G)| divides kl(n — k)! and ﬁlk)' divides |[G]].
For example, for a graph G on 6 vertices that has ex-
actly k vertices of some degree r we have that (2) divides
|[G]]. If we require that 3 does not divide |[G]| then 3
does not divide (7), but the only values of k for which
this is true are 0, 3 and 6.

A graph G is called regular if all of its vertices have
the same degree. If such degree is r, we say that G
is r-regular. When studying the divisors of automor-
phism groups of regular graphs, the following result of
N. Wormald, is very useful.

Theorem 3.3 (Wormald, [14]). Let G be a connected r-
reqular graph onn vertices, wherer > 0. Then |Aut(G)]
divides

rn Hpﬂ
p

where the product is taken over all prime numbers
p<r—1, and B is given by

n—QJ
p‘*;—l { pe

Corollary 3.4. In the hypothesis of theorem|[3.3, if r <
3, then |Aut(G)| divides rn.

Let us show how with these ideas we can give a proof
of Karp’s conjecture in the case of 5 vertices. We look
for those graphs G on 5 vertices such that 5 does not
divide |[G]| or, equivalently, that 5 divides the size of
Aut(G). This is to say that Aut(G) contains a 5-cycle,
say (12345); the orbits of this 5-cycle acting on the two-
element subsets of {1,2,3,4,5} are

A={{1,2},{2,3},{3,4},{4,5}, {1, 5}}
andB {{1,3},{2,4},{3,5},{1,4},{2,5} } (see figure

If G contains some edge in A, then GG contains A;

snmlarly, if G contains some edge in B, then G contains
B. Thus, there are just 4 options: G = K5,G = A,G =
B,G=AUB = Kj5. Note that A = B.

What we obtain is that if 5 divides |Aut(G)| then
G is isomorphic to one of the three graphs: Kj (the
graph without edges), G = C5 (a 5-cycle graph), G =
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Fig. 4: The 2 5-cycles fixed under the action of (12345).

K5 (the complete graph on 5 vertices). For any other
graph G on 5 vertices we have that 5 divides |[G]|. Now
let P be a nontrivial monotone and nonevasive graph
property, so that x(P) = 1; then P has to contain some
of these three graphs for which 5 does not divide the
size of their isomorphism classes. As K5 represents the
empty simplex, it does not contribute to x(P). As P is
nontrivial, it does not contain the complete graph K.
Then P must contain [C5]. We know that Aut(Cs) =
D5 and |[C5]| = 5!/10 = 12. Finally, since C5 represents
a face of dimension 4, x(P) has the form 5m + 12;
but this can never equal 1. This shows that nontrivial
monotone and nonevasive graph properties on 5 vertices
do not exist.

Remark 3.1. Note that we have proved indeed that
if P is any nontrivial monotone graph property on 5
vertices that contains the 5-cycle C5, then x(P) has the
form 5m + 2. In particular, P is not Z-acyclic. This
is also true for any other nontrivial monotone graph
property P on 5 vertices, for then x(P) is divisible by
5, in particular y(P) # 1.

4 Evasiveness of Graph Properties on Six
Vertices

In this section a proof of the evasiveness conjecture for
properties of graphs on six vertices is shown in detail.
The idea of estimating the Euler characteristic of the
simplicial complex associated to a graph property yields
that a nontrivial monotone and nonevasive graph prop-
erty on 6 vertices contains exactly one of the two graphs
2K3, K3 3. This is also shown in [5], by using the action
of several Oliver groups. We start with a nontrivial
monotone and nonevasive graph property P on 6 ver-
tices, equivalently, P can be regarded as a nonevasive
simplicial complex on the 15 elements which are the
two-element subsets of {1,...,6}. We want to show
that such a P cannot exist. If a group I' acts on the
set {1,2,3,4,5,6} then it acts on the 2-element subsets
of {1,2,3,4,5,6} and the orbits X7,..., X, represent
graphs on 6 vertices. The number 3 is going to play the
role of the common divisor. The first step in the proof is
to find those graphs G on 6 vertices for which 3 is not a
divisor of |[G]| (equivalently, 9 is a divisor of |Aut(G)]).
Then, as for the 5 vertices case, P has to contain some

6 1 6 1 6 1
[ ] [ ] [ ]
5e ®2 5 ®2 5 2
° ° °
4 3 4 3 4 3
Kg K3 2Ks
6 1 6 1 6 1
5 25 2 5 2
4 3 4 3 4 3
K33 Ks Ks

Fig. 5: Graphs G on 6 vertices such that 3 1 |[G]].

of these graphs in order to satisfy x(P) = 1, and this
yields various cases for P, depending on which of those
graphs P contains. Finally, by considering the action of
several Oliver groups, we show that none of those cases
can happen, reaching a contradiction and finishing the
proof. The first step, the classification of those graphs
G on 6 vertices for which 3 does not divide |[G]| is the
content of the following lemma.

Lemma 4.1. Let G be a graph on 6 vertices and sup-
pose that 3 is not a divisor of |[G]|, then G is isomorphic

to one of the following 6 graphs: K¢, K3, 2K3, K33,
K3, Kg (See figure E‘?l)

Proof. We start with the observation that 3 does not di-
vide |[G]| if and only if 9 divides |Aut(G)|. If G = K,
then |Aut(G)| = 6! and it follows that 3 does not di-
vide |[G]|. Suppose that G has at least one edge. To
use lemma[3.2] suppose there are k > 0 vertices of some
fixed degree 7 > 0 in G, then (}) divides |[G]|, but 3

divides (§) except for k = 3,6.

Consider first the case k = 3 and suppose that the
vertices of degree r are 1,2,3. By an application of
lemma |3.2] again, the remaining 3 vertices, 4,5,6, have
degree s for some s # r. Let GG; be the subgraph of G
consisting of those edges of G' connecting the vertices
1,2,3; G be the subgraph of G consisting of the edges
connecting 4,5,6 and H be the graph that has vertices
1,2,3,4,5,6 and whose edges are the edges of G connect-
ing some vertex in {1,2,3} to some vertex in {4, 5,6}
(see figure [6). We know that Aut(G) is isomorphic to
a subgroup of Sy 93y X Sga56y and that Aut(G) con-
tains a subgroup of order 9, but a subgroup of order 9
of S{1,2.3) X Sfa5,6) is isomorphic to Z/3 x Z/3 where
the first copy of Z/3 is generated for some element a of
order 3 that permutes transitively 1,2,3 and fixes 4, 5, 6;
and the second copy is generated by an element 3 of or-
der 3 that transitively permutes 4,5,6 and fixes 1,2, 3.
Now, if H has at least one edge, say {1,4}, by combin-
ing the action of a and 8 we find that H contains the
edges {1,4}, {1,5}, {1,6}, {2,4}, {2,5}, {1,6}, {3,4},
{3,5}, {3,6}. So, H has no edges or H = K33. As G
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6 1 6 1 6 1
. . °
5 2 5e 2 50 2
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G G1 Ga
6 1
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Fig. 6: The graphs G,G1,G2 and H.

has « as an automorphism, if G; has at least one edge,
then it is equal to K3. The same is true for Gs. So the
only possibilities for G = G; UGy U H are K3 and K3
(remember that in this case r # s).

Now the case k = 6. If r = 5, then G = Kg,
|Aut(G)| = 6! and 3 does not divide |[G]|. Suppose
0 < r < 5 and consider G' which is a regular graph of
degree 5 — r > 0. Note that one of the two, r or 5 — r
is less than 3. If both G and G are connected, choose
the one that has degree less than 3, without loss of gen-
erality suppose it is G. Apply Wormald’s theorem or
corollary to conclude that |Aut(G)| divides 6r, so
that 9 does not divide |Aut(G)|. If some of the two,
G or G is disconnected, say G, then apply lemma
to conclude that |Aut(G)| divides []; n;! - (m;!)™ where
6 = nimq+namo+---+ngms. As there are no isolated
vertices in GG we have that m; > 2 for all i. We look for
the partitions of 6 such that 9 divides [, n;! - (m;!)™.
If some n; > 3, then 6 > n;m; > 2n; > 6 which implies
s =1,n; =3, my = 2 and G is the union of 3 (disjoint)
copies of the graph Ko; in this case |Aut(G)| = 3123 is
not divisible by 9. If n; < 3 for all 7, the only cases in
which 9 divides []; n;! - (m;)™ are m; = 6 for some i,
or m; =3 and m; = 3 for i # j, or m; = 3 and n; = 2
for some 7. In the first case G is a regular connected
graph (but we are assuming G is disconnected), in the
second case G is the union of two nonisomorphic regu-
lar connected graphs on 3 vertices (which is impossible
because there is only one regular connected graph on
three vertices: K3) and in the third case G is the union
of two copies of a regular connected graph on 3 vertices
(that is, G = 2K3).

In case G is connected but G is not, then by the above
argument G = 2K3 and G = Ks3. This ends the
proof. O

By being nontrival, P does not contain Kjg, and the
graph Kg represents the empty simplex which does not
contribute to x(P). If none of the graphs Kj, 2K,
K33, K3 belongs to P, then for each G € P, 3 is a
divisor of |[G]| and then P cannot be nonevasive. Then
P must contain some of these 4 graphs. The following

table shows the automorphism group, the size of the
isomorphism classes of these 4 graphs and the dimen-
sion of the faces that they represent:

G | Awt(G) [[GI[ | dimG
Kg 53 X 53 20 2
2K3 | S35 10 5
Kss | 9515, | 10 8
Kg Sg X 53 20 11

Lemma 4.2. IfP is a nontrivial monotone and noneva-
stve graph property on 6 vertices, then P satisfies ex-
actly one of the following:

1) From the 4 graphs Ks,2Ks, K33, K3, P just contains
K373.

2) From the 4 graphs Ks3,2K3, K33, K3, P just contains
K3 and 2K3 -

3) From the 4 graphs K3,2K3, K33, K3, P just contains
Kg, K373 and Kg.

We will say that P is of type 1, 2 or 3 if P satisfies
1), 2) or 3) in lemma respectively. Note that if P
is of type 7, then P* is of type 3 — 4.

Proof. We have the following relations:

[K3) < [2K3), [K3] < [K3], [K33] < [K3),

that can be represented by the following poset:

[2K3] [K3)

(K] [K3,3]

As we said before, by satisfying x(P) = 1, P has to
contain some of these 4 graphs. P could just contain
any of the 15 nonempty subsets of { K3, 2K3, K33, K3},
but we note that P cannot just contain 2K3, for in-
stance, for if 2K3 € P, then K3 € P, for P is monotone
and for the relation [K3] < [2K3]. P can just contain
K3, for example; if this is the case, then we estimate
X(P). Because for all graphs G in P that are not iso-
morphic to K3, 3 is a divisor of |[G]|, x(P) has the
form 3m + 20 (K3 is a 2-dimensional face of P, and
|[K3]| = 20). The following table shows all the possibil-

ities of which nonempty subsets of {K3,2K3, K33, K3}
can be contained in P and the form that x(P) takes in
each case:

P contains just X(P)
Ks 3m + 20
Kg’g 3m + 10
K3,2K3 3m + 10
K3,K3,3 3m + 30
K3,2K3,K33 3m + 20
K3,K3,3,F3 3m + 10

K3,2K3,K373,F3 3m

The only cases in which x(P) = 1 can happen are the
cases in which x(P) has the form 3m + 10, and this
ends the proof. O
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Fig. 7: Orbits under the action of ((12), (3456), (35))

Up to this point, we have reduced the possibilities
for P to be of type 1, 2 or 3. Now, considering some
Oliver groups acting on P, and using theorem [2.3] we
will prove that none of the three types can really hap-
pen. The ideas that are going to be used are already
found in [5], but there are some results we can obtain
directly from lemma [4.2] For instance, notice that, in
any case, exactly one of the two graphs 2K3, K33 be-
longs to P.

First, we want to show that P cannot be of type
1 nor 3. Assume that P is of type 1. Thus, P con-
tains K33, but it does not contain Kj. Following [5l,
consider the group I' = ((12), (3456), (35)) which is a 2-
group (all its elements have order equal to a power of 2)
and therefore it is an Oliver group. This group acts on
the vertices of the simplicial complex P, and the orbits
A, B,C, D of this action are shown in figure[7] As all of
the graphs A, B,C,AU B and AU C are isomorphic to
subgraphs of K3 3, they belong to P. We can check that
AUD, BUD,CUD and BUC, contain a copy of K3 as a
subgraph, so they cannot be in P (as P is monotone and
does not contain K3). If D € P, then P! is a simplicial
complex whose faces are @, A, B,C, D,{A, B},{A,C};
but this implies that y(P') = 2 which contradicts the-
orem Hence, Pr is a simplicial complex with faces
o,A,B,C,{A, B},{A,C}.

s P is nonevasive, there is some vertex X of P such
that [kp(X) and delp(X) are nonevasive. The transi-
tivity of Aut(P) (remember that being a property of
graphs means that the group Sg, acting in the natural
way on the vertices of the simplicial complex P, is a
subgroup of Aut(P)) permits us to take X = A (that
is, the game can be started with the question is A an
edge of your graph?). The vertex A of P is fixed by T,
so I" acts on lkp(A), and theorem can be applied
to conclude that x((lkp(A))') = 1. By the definition
of the link, we find that (lkp(A))' = lkpr(A), which is
a complex with just two vertices (see figure |8) and no
edges, then its Euler characteristic is 2, a contradiction.
This proves that P cannot be of type 1.

e} e C
L [ ]
A B B
PF lka(A)
Fig. 8:
6 1 6 1
5/ \2 5§ ?2
4 3 4 3
A B

Fig. 9: Orbits under the action of ((12), (34), (56), (135)(246))

If P is of type 3, then P* is of type 1; but the above
argument applied to P* gives as result that P* cannot
be of type 1 and as consequence, P cannot be of type 3.

Finally suppose that P is of type 2. In this case, P*
is also of type 2. Both P and P* contain K3 and 2K3,
but they do not contain K33 nor K3. The following
lemma holds for P without the assumption of being of
type 2.

Lemma 4.3. If P is a nontrivial monotone and noneva-
stve graph property on 6 vertices, then all perfect match-
ings belong to P.

Proof. Consider the group I' generated by the permuta-
tions (12), (34), (56) and (135)(246). This I' is an Oliver
group, for I'; can be taken as the subgroup of I' gener-
ated by (12), (34) and (56), which has order 8 and the
quotient I'/T'; is cyclic and isomorphic to ((135)(246)).
Thus, theorem [2.3| implies that [P|'' # &.

The group I' acts on the set of 2-element subsets of
{1,2,3,4,5,6} and the two orbits of this action, A and
B, are shown in figure |§| In the abstract version of PT,
theorem [2.3]says that at least one of the graphs in figure
[ belongs to P. Note that A is a perfect matching. We
claim that P does not contain B. On the contrary,
suppose B is in P and note that B contains a perfect
matching as a subgraph; thus P contains both A and B.
This two, A and B are all rpossible vertices of P and
theorem says that x(P') = 1; this obligates P to
contain the face { A, B}, which means that AU B = Kg
belongs to P, a contradiction. Therefore, P contains A
(and so P contains all perfect matchings). Note that
we have proved that from the two graphs, A and B, P
contains exactly A. O

Now we prove that P cannot be of type 2. Assume
P is of type 2. Consider the group I' = ((153624)).
The orbits A, B,C of T are in figure [I0] This T is an
Oliver group as it is cyclic of order 6, so I'y can be
taken as any subgroup of order 3 (as I'; has index 2,
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Fig. 10: Orbits under the action of ((153624))

it is normal) whose quotient is cyclic of order 2. By
lemmal[d.3] A € P. As P is of type 2, B € P. We claim
that C' is also in P. If not, P* has just two vertices
A, B and theorem [2.3] implies that AU B € P, but C
is isomorphic to a subgraph of AU B, so C is in P.
This argument also applies to P* (as it is also of type
2), so we have that A, B,C' € P*. By the definition
of P*, A= BUC,B=AUC,C = AU B are not
in P, so P' consists only of three vertices and this
contradicts theorem [2.3] This finishes the proof that
every nontrivial monotone graph property on 6 vertices
has to be evasive.

Remark 4.1. The estimation of the Euler character-
istic by means of divisors of the sizes of isomorphism
classes of graphs on n vertices is not generally enough
to give a proof of evasiveness. The use of another tool is
necessary like theorem [2.3] for instance. In fact, there
are nontrivial monotone graph properties P satisfying
X(P) = 1; see [4], pp. 124, or also [7] for an example
on 6 vertices. In [4] there is an example of a monotone
graph property on 6 vertices which is Q-acyclic, but it
is not Z-acyclic.
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