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An overview on some regression models.
Part I: Simple linear regression

GÉRARD GRÉGOIRE

Abstract

This article and its sequel form an introduction to the �eld of
regression analysis. We start by presenting brie�y a panorama
of regression models: linear models, generalized linear models,
nonparametric and semi-parametric regression models, non-
linear models. Then in the remainder of the text we focus
on simple linear regression, which is the situation where the
mean of a variable Y , i.e. the response variable, is depend-
ing linearly on another variable x1 called the regressor. We
are concerned with standard usual context, that is we as-
sume, together with other conditions, that the error variable
is gaussian. In this context we present estimates obtained by
least squares methods and their basic properties. Then oper-
ational tools for statistical inference are designed: con�dence
and prediction intervals, signi�cance tests and anova tables.
The issue of diagnostic tests to detect observations which play
particular roles in the regression is addressed in some detail:
outliers, observations with high leverage e�ect and in�uent
observations are concerned. Finally we indicate some ideas to
deal with the situation where some of the model assumptions
are not satis�ed. It is worth emphasizing that all along the
text we make a special e�ort to �nd a compromise between
mathematical rigor and applied statistical concerns. We give
precise proofs for speci�c issues that we consider of particular
signi�cance. Finally we illustrate both methods and results
all along the text with one unique dataset analyzed by means
of the R software.

MSC 2010. Primary 62J05; Secondary 62J10, 62J20

1 Introduction

The term regression gathers a set of statistical meth-
ods which aims at analyzing the relationship between
a variable Y , the response variable, and independent
variables, say x1, x2, . . . , xp. For simplicity, in this pa-
per, we limit ourselves to the situation where Y is one-
dimensional, but Y could as well be multidimensional.
The response variable can be a quantitative variable
as, for instance, it is the case with linear regression.
Other regression models focus on qualitative Y : logis-
tic regression is a classical example. The regression,
together with classi�cation, is one of the main tools for
extracting information in datasets, and can be used in
large datasets as in data mining or big data.

Regression methods are used in almost every domain:
social sciences, life sciences including biology and medi-
cine, environmental sciences, physical sciences and en-
gineering. It is worth to note that the domain of mod-
eling in economy has been a particularly fertile �eld
for regression methods: the economists have not only
extensively applied regression to their problems, but
they also developed original methodological contribu-
tions to deal with particular situations (see for instance
[8]).

Here we present some examples of applications in dif-
ferent �elds, but numerous other ones could be out-
lined. Specialists of atmospheric pollution study by
means of linear regression the relationship between the
mean SO2 concentration in a city and on one hand
variables related to the size of the city and to the level
of industrial activity, and on the other hand on mete-
orological variables such as wind speed, rainfall quan-
tities, number of wet days, etc. Economists study by
simple linear regression the relationship between the
consumption and the income of a household, but de-
sign also more complicated regression models to model
the behavior of the GNP of an economy as a linear
function of investment, capital and labor amount. In
marketing, logistic regression is used to segment the
clientele, that is to de�ne classes along the appetence
of the customers for a product in relationship with
variables such as age, marital situation, type of work,
favorite pastime. In a similar way logistic regression
is used in medical research for instance to estimate
prostate cancer risk from variables such as PSAmarker,
results of biopsy, local examination and heredity.

Regression methods are designed to explain the be-
havior of Y as a function of input variables x1, . . . , xp.
They are intended to identify the input variables with
a signi�cant e�ect on Y , as well as the ones with no
such e�ect, and to quantify the e�ect. They must be
able also to predict the most probable value for Y given
new values of xi's, and to provide information on the
accuracy of this prediction. This prediction ability is
often used by engineers in order to control processes.
For instance, in a paper mill bleaching of the pulp can
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be achieved using chlorine dioxine. A regression analy-
sis allows to relate the brightness grade to the quantity
of chlorine dioxine used during the pulp cooking. Then
the relationship can be used to control the brightness
by choosing accurately the quantity of dioxine chlo-
rine.

Finally let us mention that although regression meth-
ods are usually considered as general statistical meth-
ods, we can also �nd them as part of papers or books
devoted to machine learning or statistical learning (see
for instance [9], [10] and [11]). Loosely speaking the
paradigm which is the basis of these learning works
is that the experimenter is faced with a dataset (the
training data) from which he has to learn relationships
between some variables. We speak of unsupervised
learning when the main variable of interest is unob-
served, and supervised learning otherwise. Regression
methods are supervised learning methods.

We start this paper by giving a global overview on
various regression models that are commonly used by
statisticians, depending on the type of data they are
analyzing, and what questions they try to answer. Then
in the second part of this introduction, we turn to the
particular case of the simple linear regression model.
We de�ne precisely this model, list the statistical ques-
tions we are interested in, and present the dataset that
we use in this paper to illustrate our methods and re-
sults.

1.1 An overview of classical regression
models

Historians attribute to Legendre and Gauss in the be-
ginning of the nineteenth century, the �rst mathemat-
ical work on linear regression. For the anecdote, the
term �regression� goes back to Francis Galton who, in
a study around 1875 comparing the sizes of fathers
with the ones of their sons, observed that: �. . . sons

of tall fathers tend to be tall but not as tall as their

fathers while sons of short fathers tend to be short but

not as short as their fathers. . . � and called this e�ect
�a regression e�ect�.

1.1.1 The simple linear regression model

We start with the simplest regression model, namely
the simple linear regression which is the subject we
develop after this introduction.
We are given a random variable Y whose mean de-
pends in a linear way on the value of x1, a nonrandom
numeric variable:

E(Y | x1) = β0 + β1x1. (1.1)

We write µ(x1) the mean function E(Y | x1). To be
more precise we suppose that we can write

Y = µ(x1) + ε (1.2)

= β0 + β1x1 + ε, (1.3)

with ε a random variable whose distribution is inde-
pendent of x1 and is centered, that is E(ε) = 0. Note
that this means in particular that the variance of Y
doesn't depend on x1. Thus we have Var(Y |x1) =
Var(ε) = σ2(say).
Y is called the response variable (also dependent vari-
able, explained variable).
x1 is the regressor (also predictor, independent vari-
able, explicative variable, input variable, covariable).
Given observations (xi1, yi), i = 1, . . . , n, the statisti-
cian investigates the relationship, supposed to be lin-
ear, between the mean of Y and x1.

We de�ne the model in more details in the next sec-
tion. At this stage, let's note that, even if the primary
interest is clearly in the statistical inference about β0

and β1, σ
2, some other informations, such that for

instance the accuracy of the model or the prediction
intervals for Y , are worth investigating too.

1.1.2 The multiple linear regression model

The multiple linear regression is a generalization of
the previous model: now the mean of Y is linearly
dependent on p ≥ 1 regressors x1, . . . , xp:

µ(x1, . . . , xp) = E(Y | x1, . . . , xp)

= β0 + β1x1 + · · ·+ βpxp.

More precisely we assume that we can write:

Y = µ(x1, . . . , xp) + ε

= β0 + β1x1 + · · ·+ βpxp + ε, (1.4)

where the distribution of ε doesn't depend on the re-
gressors and E(ε) = 0. Hence, as in the simple linear
regression, the variance of Y , which is also the one of
ε, doesn't depend on the regressors. We still denote
σ2 this variance.
Statisticians are often faced with situations where a re-
sponse variable Y depends on several �possibly many�
variables, and are interested in issues like the follow-
ing ones. What are the variables with an e�ect on Y ?
How to model the e�ect of one variable when taking
into account the e�ects of other ones? Is there any
interaction between some variables? Are there vari-
ables which bring similar information about the re-
sponse variable? Can we de�ne a parcimonious model
while preserving the information? etc. Multiple lin-
ear regression occupies a prominent place among the
methods to tackle these multivariate issues.

Finally let us note that for sake of simplicity, we inten-
tionnaly gave a restrictive de�nition of linear regres-
sion: (1.4) de�nes in fact a particular case of linear
model. A polynomial model like the one de�ned by:

Y = β0 + β1x1 + β2x
2
1 + β3x

3
1 + ε

is also a linear regression model, even though x1 occurs
nonlinearly. Indeed setting x̃i = xi1, i = 1, . . . , 3 we get

Y = β0 + β1x̃1 + β2x̃2 + β3x̃3 + ε.
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In its most general form, a linear regression model is a
model linear with respect to parameters βi's. Hence in
such a model the variable response Y may be related
to the xi's in a nonlinear way, but the relationship can
be made linear with respect to other variables choosen
in an adequate way.

1.1.3 Generalized linear model

What is called a generalized linear model, in short
GLM, is a model where the dependence between the
mean of the response variable Y and the regressors
is de�ned through a link function. That is, it is not
the mean that we model as a linear function of the
regressors, but a function of the mean. Precisely we
have:

g(µ(x1, . . . , xp)) = β0 + β1x1 + · · ·+ βpxp,

and we recall that µ(x1, . . . , xp) = E(Y | x1, . . . , xp).
We still have:

Y = µ(x1, . . . , xp) + ε

with E(ε) = 0.
Let us observe that the variables ε don't play the same
role as in linear regression. Their distributions may de-
pend on the regressors and must belong to a particular
class. Besides, while in linear regression the estimates
are obtained by least squares method, it's the maxi-
mum likelihood method that is used in GLM models
to get the estimates.
Two particular generalized linear models are popular:
the logistic regression and the poissonian regression.

Logistic regression.
Let's suppose that the response variable is binary with

P (Y = 1 |x1, . . . , xp) = π(x1, . . . , xp)

P (Y = 0 |x1, . . . , xp) = 1− π(x1, . . . , xp).

Hence we have:

µ(x1, . . . , xp) = E(Y | x1, . . . , xp) = π(x1, . . . , xp).

The logistic model is de�ned by :

log
µ(x1, . . . , xp)

1− µ(x1, . . . , xp)
= β0 +β1x1 + · · ·+βpxp, (1.5)

which means that the link function is given by:

g(u) = log
u

1− u
= logit(u). (1.6)

The logistic model is one of the models that are used
to model the relationship between the probability of
an event and a set of covariables.

Poissonian regression.
Let's consider the situation where, when the covari-
ables are given by x1, . . . , xp, Y is Poisson-distributed
with mean µ(x1, . . . , xp) = exp(β0 +β1x1 +· · ·+βpxp).
That is:

log(µ(x1, . . . , xp)) = β0 + β1x1 + · · ·+ βpxp.

This means that the link function is given by:

g(u) = log(u). (1.7)

The poissonian regression is used to model the depen-
dence between variables of counts and regressors.

1.1.4 Miscellaneous regression topics

Nonparametric and semiparametric models.
So far the regression models presented were paramet-
ric. That is, in these models, the relationship between
the distribution of Y and covariables goes through pa-
rameters β0, β1, . . . , βp. This is also the case for the
nonlinear model, see the end of subsection 1.1.4.
Nonparametric models are used when there is no ar-
gument to base the relationship on a particular para-
metric function. A nonparametric regression model is
de�ned by:

Y = f(x1, . . . , xp) + ε (1.8)

where f is unknown, E(ε) = 0 and the distribution of
ε doesn't depend on the regressors values.
Statistical inference about the unknown function f was
a major research subject for the twenty �ve last years
and numerous methods were developped: kernels, local
polynomials, spline, orthogonal projections, wavelets,
etc.
Semiparametric models are models with both a para-
metric and a nonparametric part. An example of such
a model is the Cox model which is popular in sur-
vival data analysis. Cox model is de�ned through the
hazard rate function. Let's recall that the (instanta-
neous) hazard function is de�ned by h(t) = f(t)/(1−
F (t)), where f is the probability density function and
F the cumulative density function. In the Cox model
the hazard function of an individual with covariables
x1, . . . , xp is de�ned by:

h(t ; x1, . . . , xp) = h0(t)× exp(β1x1 + · · ·+ βpxp).
(1.9)

where the nonparametric part h0(·) is to be estimated
as well as the parameters β1, . . . , βp. This model is
fairly �exible, since the shape of the hazard function
can be adjusted via the baseline hazard function h0

and e�ects of covariables are taken into account as a
multiplicative factor.

Regression models involving other characteris-
tics than the mean.
So far we focused essentially to modeling the mean of
the response variable Y . Just above the Cox model,
see (1.9), is an example of regression model where the
link between the response variable Y and the regres-
sors x1, . . . , xp involve other probabilistic characteris-
tics than the mean.
Another example, again in the �eld of survival anal-
ysis, is the one of AFT models (Accelerated Failure
Times models). In such a model, the lifetime of an in-
dividual with covariables x1, . . . , xp, which we denote
by T (x1, . . . , xp), is distributed as a multiple, depend-
ing on x1, . . . , xp, of a baseline lifetime T0:

T (x1, . . . , xp) ∼ a(x1, . . . , xp)T0 (1.10)
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Along the choice of the parametric distribution of T0,
di�erent regression models arise out. It must be noted
that, in Cox model as well as in AFT models, statis-
tical inference is achieved via the maximum likelihood
methodology.

Nonlinear regression.
A nonlinear regression model is a parametric model
where the mean function µ(x1, . . . , xp) of the response
variable Y is nonlinear in the parameters β0, β1, . . . , βp.
That is

Y = µ(x1, . . . , xp) + ε

= f(x1, . . . , xp;β0, . . . , βp) + ε

where E(ε) = 0. In the most simple version of this
model we assume that the distribution of ε is indepen-
dent of the regressors x1, . . . , xp. The nonlinearity of f
is to be understood in the following way: there exists
at least one βi for which the derivative of f with re-
spect to βi depends on at least one of the parameters.
For instance, the Michaelis-Menten model for enzyme
kinetics uses one regressor and is de�ned by:

f(x1;β0, β1) =
β1x1

β0 + x1
.

We can check that
∂f

∂β0
= − β1x1

(β0 + x1)2
and

∂f

∂β1
=

x1

β0 + x1
, which is consistent with the given de�nition

of nonlinearity. The solution goes through local lin-
earization of the function and local least squares.

1.2 Relevant issues in simple linear
regression

First let's recall what was considered above. A linear
regression is a model where a variable Y is depending
on x1 in the following way:

Y = β0 + β1x1 + ε. (1.11)

where ε is a random variable with zero mean, and dis-
tributed independently of x1. The random variable Y
is called the response variable, x1 is nonrandom and
called the regressor. From (1.11), it comes that the
mean function µ(·) satis�es:

µ(x1) = E(Y | x1) = β0 + β1x1.

In a practical statistical setting, we are given obser-
vations (xi1, yi), i = 1, . . . , n, from which we are to
draw statistical inference about β0 and β1. In a �rst
step we look for estimates of β0 and β1. A very popu-
lar method to get these estimates is the Least Squares
method which consists in minimizing the square errors
sum:

S(β0, β1) =

n∑
i=1

(yi − β0 − β1xi1)2 (1.12)

as a function of β0 and β1. See Fig. 1: the least
squares method looks after the line for which the sum
of squared lengths of vertical segments between each
data point and its projection onto the line is minimum.
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By the least squares method we get an estimate for
the model (1.11), that is β̂0 and β̂1 and estimates for
their precisions. With some conditions which are made
precise in de�nition 2.1 below, this enables us to deal
with the relevant statistical issues.

Some statistical issues that are of interest:

1. Is the regression of any interest? i.e. is β̂1 sig-
ni�cantly di�erent from 0?

2. Can we give a con�dence interval for β1?

3. Can we give a measure for the extent to which
the regression line explains the data?

4. Let x0
1 be any new observation of x1 and suppose

that Y 0 = Y (x0
1) is not observed. Is it possible

to give a con�dence interval for µ(x0
1) = E(Y 0)?

How this con�dence interval is related to the dis-
tance between x0

1 and (xi1)i=1,...,n?

5. Is it possible to give a prediction interval for
Y 0 = Y (x0

1)?

6. Are there some data which greatly a�ect the esti-
mated regression equation? Are there some data
which are not well explained by the regression?

We provide answers to these issues in the following
sections.

In this paper we rely on the R software to illustrate
the methods and results. Readers who are not R users
are invited to download the software (freely) from the
cran website:

https://cran.r-project.org/
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Further we use extensively the functions provided by
the R library �car�, which is an abbreviation for �Com-
panion to Applied Regression". Note that a book by
Fox and Weisberg with the same title [15] can help to
use these functions, although most of them are easy to
work with and don't need extensive documentation.
Through this paper we use the data set �trees�. The
R �le contains variables Girth, Height and Volume for
31 felled black cherry trees. The �le �trees� is available
from the package �dataset� which can be downloaded
when R is active. For illustration of simple linear re-
gression we only consider Height and Volume and we
provide below the 31 observations, sorted along the in-
creasing values of Height.

Height Volume Height Volume

1 63 10.2 17 77 42.6

2 64 24.9 18 78 34.5

3 65 10.3 19 79 24.2

4 66 15.6 20 80 22.6

5 69 21.3 21 80 31.7

6 70 10.3 22 80 58.3

7 71 25.7 23 80 51.5

8 72 16.4 24 80 51.0

9 72 38.3 25 81 18.8

10 74 22.2 26 81 55.4

11 74 36.3 27 82 55.7

12 75 18.2 28 83 19.7

13 75 19.9 29 85 33.8

14 75 19.1 30 86 27.4

15 76 21.0 31 87 77.0

16 76 21.4

Tab. 1: Observations of (Height,Volume) for 31 black
cherry trees

This dataset is used all along the text to illustrate
results and methods: all the given R outputs concern
these data except in subsection 6.2.

We are to estimate the relationship between the re-
sponse variable �Volume� and the regressor �Height�
assuming this relationship is linear.

The R commands:

***************************************

trees3<- trees[,2:3]

o<- order(trees3$Height) # to sort

trees3$Height<- trees3$Height[o] # the file trees3

trees3$Volume<- trees3$Volume[o] # along Height

plot(trees3,xlab="Height (ft)",ylab="Volume

(cubic ft)",xlim=c(60,90),ylim=c(5,85))

***************************************

sort trees3 along increasing values of �Height� and pro-
vide Fig. 2.

2 Model, assumptions and Least
Squares method

Here we set more precisely the model and assumptions.
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Fig. 2: Black cherry trees data

De�nition 2.1. The Simple Linear Regression
(SLR) model.
The simple linear regression model is de�ned in the
following way.
We assume that, for i = 1, 2, . . . , n, we are given xi1
and we observe yi a value of Yi satisfying:

Yi = β0 + β1xi1 + εi (2.1)

where

• xi1, i = 1, . . . , n, are deterministic values of x1,

• εi are centered i.i.d. (independent and identi-
cally distributed) gaussian variables.

In other words (εi)i=1,...,n are i.i.d. N (0, σ2)-distri-
buted variables. It follows that the variables Yi are
independent and N (β0 + β1xi1, σ

2)-distributed.
Let us emphasize that we have in fact three parame-
ters to investigate, β0, β1 and σ2.

De�nition 2.2. Least squares estimates.
β̂ = (β̂0, β̂1)′ is a Least Squares estimate (LSE) of
β = (β0, β1)′ when for any (β̃0, β̃1):

S(β̂0, β̂1) ≤ S(β̃0, β̃1),

where S is de�ned by (1.12).

Hereafter we note:
1 = (1, 1, . . . , 1)′ ∈ Rn
x1 = (x11, x21, . . . , xn1)′

y = (y1, y2, . . . , yn)′

ε = (ε1, ε2, . . . , εn)′.

Usual empirical moments for x1 and y are involved
throughout the text, they are de�ned by:

x̄1 = 1/n
∑

xi1 and ȳ = 1/n
∑

yi

var(x1) = 1/n
∑

(xi1 − x̄1)2

cov(y,x1) =
1/n

∑
(yi − ȳ)(xi1 − x̄1)

1/n
∑

(xi1 − x̄1)2
,
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where the sums are understood to be over i varying
from 1 to n.

Theoretical mean, variance and covariance will be de-
noted by E, Var and Cov.

In the standard setting where the values of x1 are not
all the same, the Least Squares problem has a unique
solution.

Theorem 2.3. Suppose that x1 = (x11, x21, . . . , xn1)′

di�ers from c · 1, then there exists a Least Squares

estimate. The estimate is unique and given by: β̂1 =
cov(y,x1)

var(x1)

β̂0 = ȳ − β̂1x̄1.

(2.2)

Proof. The proof is straightforward. The function S,
as de�ned in (1.12) is C2 and the Hessian matrix is
given by:

H = 2n

[
1 x̄1

x̄1
1

n

∑
x2
i1

]
. (2.3)

Due to the assumption x1 6= c · 1 (i.e. var(x1) 6= 0),
H is positive de�nite and it follows that S is a convex
function. Further ∂S/∂β0 = 0 yields ȳ = β1x̄1 + β0

and ∂S/∂β1 = 0 leads to cov(y,x1)− β1var(x1) = 0.
The result follows.

In the rest of the paper we use:

ŷi = β̂0 + β̂1xi1 (2.4)

ei = yi − ŷi. (2.5)

The terms ŷi are called �tted values (�tted responses,
adjusted values,...), and the ei are the residuals. We
can write

εi = yi − (β0 + β1xi1)

ei = yi − (β̂0 + β̂1xi1).

This suggests that we can see the residual ei as an
estimate of the error εi.
It is convenient also to consider vectors:

e = (e1, e2, . . . , en)′ (2.6)

ŷ = (ŷ1, ŷ2, . . . , ŷn)′. (2.7)

Clearly we have e = y − ŷ.
It can be shown that the vector ŷ is the projection of
y, in Rn, onto the subspace generated by the vectors 1
and x1. More details on these geometrical aspects will

be given in part II. A consequence is that
∑

ei = 0

and we can estimate σ2 by:

σ̂2 =

∑
e2
i

n− 2
(2.8)

where the term (n − 2) in the denominator of (2.8)
follows from properties given the next section.

3 Basic properties of the Least Squares
Estimate (LSE)

Theorem 3.1. For the model 2.1 β̂ = (β̂0, β̂1)′ is
gaussian and:

β̂0 ∼ N (β0,
σ2

n

[
1 +

x̄2
1

var(x1)

]
) (3.1)

β̂1 ∼ N (β1,
σ2

n

1

var(x1)
) (3.2)

and Cov(β̂0, β̂1) = −σ
2

n

x̄2
1

var(x1)
.

Further (n− 2)σ̂2/σ2 ∼ χ2
n−2 and β̂ and σ̂2 are inde-

pendently distributed.

Proof. From (2.2) we can see that β̂ is a linear func-
tion of y, and consequently of ε. Hence the �rst part
of the theorem follows from elementary calculations.
For the second part we use a variant of Cochran's the-
orem. The vector e/σ is the orthogonal projection
PV ⊥

1
ε/σ of ε/σ on the subspace V ⊥1 orthogonal com-

plementary of the subspace V1 = V{1,x1} generated
by 1 and x1. Applying Cochran's theorem, this im-

plies that
1

σ2
||e||2 is χ2

n−2-distributed. Besides β̂ − β
can be written Lε/σ and L satis�es LPV ⊥

1
= 0. It

then follows that β̂ and e are uncorrelated and thus
also independent.

Remark 3.2. It follows from Theorem 3.1 that β̂ is un-
biased and the same holds true for σ̂2. We have also
Var(σ̂2) = 2σ4/(n− 2).

The least squares estimate β̂ is also a maximum likeli-
hood estimate. This follows from the fact that, up to
an additive constant, the log-likelihood function can
be written:

−n
2

log(σ2)− 1

2σ2

∑
(yi − β0 − β1xi1)2.

Proposition 3.3. Assume that n · var(x1) → ∞ and

that x̄1 is bounded, then β̂ and σ̂2 converge in proba-

bility respectively to β and σ2.

Proof. From Theorem 3.1 and Remark 3.2 the result
is clear for σ̂2. By the assumptions the variances of β̂
are going to 0. Since the estimates are unbiased the
result follows.

Note that the given conditions are only su�cient. The
sequence of experimental designs de�ned by x1(n) =
(1, 2, . . . , n)′ results in convergent estimates although
x̄1(n) is unbounded. An example of nonconvergence
case is given by x1(n) = (1, 1/2, . . . , 1/n)′: in this
case var(x1(n)) is vanishing way too fast. But clearly,
this example is not of much interest from a statistical
point of view and in standard realistic situations the
convergence holds true.
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Theorem 3.4. In the class of unbiased estimates of β,
the LSE β̂ has the minimum variance. Moroever β̂ is

asymptotically e�cient, i.e. achieves asymptotically

the best possible variance.

We postpone the proof of this result to part II devoted
to multiple linear regression.
The �rst part of this result is often rephrased by say-
ing that β̂ is BUE (Best Unbiased Estimate).

For our dataset the R commands:

***************************************

reg_trees3<- lm(Volume~Height,data=trees3)

summary(reg_trees3)

***************************************

provides:

***************************************

Call:

lm(formula = Volume ~ Height, data = trees3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.1236 29.2731 -2.976 0.005835

Height 1.5433 0.3839 4.021 0.000378

***************************************

Thus β̂0 = −87.1236 and β̂1 = 1.5433. We will see
in the end part of section 4.1 the interpretation of the
other informations given in the table above.
To plot the regression line together with the data, we
only run:

***************************************

plot(trees3,xlab="Height (ft)",ylab="Volume

(cubic ft)",xlim=c(60,90),ylim=c(5,85))

abline(reg_trees3)

***************************************

The result is given by Fig. 3.
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Fig. 3: Black cherry trees data. Observations and re-
gression line for (Height,Volume)

It is clear that we can't use directly the above results
to perform statistical inference on a dataset since σ2

is usually unknown. Hence we substitute σ̂2 to σ2 in
(3.1) and (3.2) to get natural estimates s2

0 and s2
1 for

the variances of β̂0 and β̂1. The standard deviation

estimates s0 and s1 are given by:

s0 =

√
σ̂2

n

[
1 +

x̄2
1

var(x1)

]
(3.4)

s1 =

√
σ̂2

n

1

var(x1)
. (3.5)

By use of Theorem 3.1, this gives us a modi�cation of
(3.1) and (3.2) which can be used for inference pur-
poses:

Corollary 3.5. With an appropriate rescaling, β̂0 and

β̂1 are Student distributed with n−2 degrees of freedom.

More precisely:

β̂0 − β0

s0
∼ Tn−2 (3.6)

β̂1 − β1

s1
∼ Tn−2. (3.7)

Proof. (β̂0 − β0)/s0 can be rewritten:

β̂0 − β0√
σ2

n

[
1 +

x̄2
1

var(x1)

]
/√

1

n− 2

( (n− 2)σ̂2

σ2
.
)

(3.8)

From Theorem 3.1 it comes that the left part of this ex-
pression is N (0, 1)-distributed and independent from

the right part. Since
(n− 2) σ̂2

σ2
is χ2

n−2-distributed,

we get the result for β̂0. The proof for β̂1 is simi-
lar.

Test procedures, con�dence intervals (CI) and predic-
tion intervals (PI) will be de�ned in the next section
via this result.

4 Statistical inference

4.1 Tests procedures for the regression
coe�cients

Building tests procedures for hypotheses on β0 or β1

follows from corollary 3.5 in a straightforward way.
In this paragraph as well as the rest of the paper we
denote tn(α) the 100×(1−α)%-quantile of the Student
distribution with n degrees of freedom, that is:

P (Tn > tn(α)) = 1− α.

Proposition 4.1 (Two-tailed t-test.). The test of H0 :
β1 = β0

1 against H1 : β1 6= β0
1 is de�ned by the critical

region:

|β̂1 − β0
1 | > tn−2(α/2) · s1

and if t =
β̂1 − β0

1

s1
the p−value is given by P (|Tn−2| >

|t|) = 2P (Tn−2 > |t|).
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Proposition 4.2 (One-tailed t-test.). The test of H0 :
β1 = β0

1 against H1 : β1 > β0
1 is de�ned by the critical

region:

β̂1 > β0
1 + tn−2(α) · s1

and the p−value is given by P (Tn−2 > t).

For the alternative hypothesis H1 : β1 < β0
1 the crit-

ical region is given by β̂1 < β0
1 − tn−2(α) · s1 and the

p−value is P (Tn−2 < t).

The tests can be performed on our data set using the
information given by the R command "summary": see
the R output just after the statement of Theorem 3.4.
We obtained:

s0 = 29.2731 β̂0/s0 = −2.976 P (|T29| > 2.976) =

0.005835,

s1 = 0.3839 β̂1/s1 = 4.021 P (|T29| > 4.021) =

0.000378.

Thus the p-value for the two-tailed test of β0 = 0 (resp.
β1 = 0) is equal to 0.005835 (resp. 0.000378). This
means that we reject the null-hypothesis for β0 as well
as for β1.
For the one-tail test of β1 = 0 against β1 > 0 the p-
value is 0.000189 and we again reject H0.
We will see in the next section another formulation of
this test using anova analysis.

4.2 Con�dence intervals (CI) for
regression coe�cients

Using corollary 3.5 with s0 and s1 as de�ned by (3.4)
and (3.5) we get 100 × (1 − α)% con�dence intervals
for β0 and β1.

Proposition 4.3. The intervals given by:[
β̂0 − tn−2(α/2) · s0, β̂0 + tn−2(α/2) · s0

][
β̂1 − tn−2(α/2) · s1, β̂1 + tn−2(α/2) · s1

]
are 100× (1−α)% con�dence intervals for β0 and β1.

Note that we write as well β̂0± tn−2(α/2)s0 for the β0

CI, and there is an analogous expression for β1.

Con�dence intervals for regression coe�cients are pro-
vided by R using confint command. For our dataset
we get:

***************************************

confint(reg_trees3,level=0.90)

5 % 95 %

(Intercept) -136.8623664 -37.384861

Height 0.8911071 2.195592

***************************************

Thus we see that the 90% CI for β0 is [−136.86, −37.38]
and the one for β1 is [0.89, 2.20].

The level argument is optional: when omitted, the de-
fault level 95% is applied.

***************************************

confint(reg_trees3)

2.5 % 97.5 %

(Intercept) -146.993871 -27.253357

Height 0.758249 2.328451

***************************************

4.3 Con�dence intervals (CI) for the
mean

Suppose that from observations (xi1, yi), i = 1, . . . , n,
we obtained an estimation for the linear model Y =
β0 + β1x1 + ε with usual assumptions and let x0

1 be
any new value for the variable x1. We are to design a
100× (1− α)%-CI for the mean µ(x0

1) = β0 + β1x
0
1.

From the estimates β̂0 and β̂1 we obtained using the
observations at hand, it is natural to set as pointwise

estimate for the mean: µ̂(x0
1) = β̂0 + β̂1x

0
1.

This estimate is unbiased and, using results of The-
orem 3.1, some elementary calculations show that its
variance is given by:

σ2

n

[
1 +

(x0
1 − x̄1)2

var(x1)

]
which we estimate substituting again

σ̂2 =
∑

e2
i /(n− 2) to σ2.

We then get a 100× (1− α)%-CI for µ(x0
1).

Proposition 4.4. The interval given by:

β̂0 + β̂1x
0
1 ± tn−2(α/2)

√
σ̂2

n

[
1 +

(x0
1 − x̄1)2

var(x1)

]
(4.1)

is a 100× (1− α)% con�dence interval for µ(x0
1).

We note that as x0
1 is going far from x̄1, the CI is

becoming increasingly large.

4.4 Prediction intervals (PI)

Now, given x0
1 a new value of x1 as done above, we are

to build an interval which contains Y 0 = Y (x0
1) with

probability 1−α. The best pointwise prediction of Y 0

is its mean which can be estimated by:

Ŷ 0 = µ̂(x0
1) = β̂0 + β̂1x

0
1.

The 100× (1− α)% prediction interval (PI) will be in

the form Ŷ 0 ± ζ where ζ satis�es

P (Ŷ 0 − ζ ≤ Y 0 ≤ Ŷ 0 + ζ) = 1− α i.e. :

P (|Ŷ 0 − Y 0| ≤ ζ) = 1− α.

Ŷ 0 and Y 0 are independant gaussian variables with

same means. Consequently Ŷ 0 − Y 0 is gaussian with
zero mean and its variance satis�es:

Var(Ŷ 0 − Y 0) = Var(Ŷ 0) + Var(Y 0)

=
σ2

n

[
1 +

(x0
1 − x̄1)2

var(x1)

]
+ σ2.

Finally we replace σ2 by σ̂2 and we get the
100× (1− α)%-PI for Y 0.



5 Variance decomposition. ANOVA table and R2 129

65 70 75 80 85

10
20

30
40

50
60

70
Confidence and Prediction Intervals

Height

Vo
lum

e

Fig. 4: Black cherry trees data. 70% con�dence inter-
vals for the mean, and 70% prediction intervals
in the regression of Volume on Height. The
black color line is the estimated mean function.
The narrow band (red color) is related to CI in-
tervals for the mean, and the large band (blue
color) is related to PI for the variable �Volume�.

Proposition 4.5. The interval given by:

β̂0 + β̂1x
0
1 ± tn−2(α/2)

√
σ̂2

n

[
1 + n+

(x0
1 − x̄1)2

var(x1)

]
(4.2)

is a 100×(1−α)% prediction interval for Y 0 = Y (x0
1).

Notice that the shape of CI and PI intervals should
be roughly similar, but the bands de�ned by the end-
points of the intervals are wider for PI-intervals and
show less curvature than CI-intervals. See below these
curves estimated for our dataset.

4.5 Plots of CI and PI intervals using R
for black cherries trees data

We use the function ci.plot() of the library Rcmdr-
Plugin.HH to get the plot given by Fig. 4. For example
the higher curve is the graphical representation of the
dots (Height, Ŷ (Height)). The interpretation of other
curves is analogous except the central line which is the
regression line. The set between the lower and higher
curves is named prediction band, and the one de�ned
by the two other curves con�dence bands. Let's em-
phasize that con�dence and prediction bands are not
true bands. The correct interpretation is only point-
wise and no information is given by these curves on
the joint distributions.

***************************************

library(RcmdrPlugin.HH)

ci.plot(reg_trees3,main="95% confidence

and prediction intervals for reg_trees3")

***************************************

It is possible, but a bit less straightforward, to use the
standard R function predict():

***************************************

> new<- data.frame(Height<-seq(60,90,0.5))

> pred.w.plim <- predict(reg_trees3, new,

interval = "prediction",level=0.70)

> pred.w.clim <- predict(reg_trees3, new,

interval = "confidence",level=0.70)

> plot(trees3,xlab="Height",ylab="Volume",

main="Confidence and Prediction Intervals")

> matplot(new$Height, cbind(pred.w.clim,

pred.w.plim), lty =c(1,1,1,1,1,1),

col=c("black","red","red","black","blue",

"blue"),type="l",ylab="Volume",add=TRUE)

***************************************

5 Variance decomposition. ANOVA
table and R2

5.1 Anova table

Let us remind that ŷ is the orthogonal projection of
y on the subspace V1 = V{1,x1} generated by 1 and
x1, and ȳ the projection of y on V{1}. Besides, from∑

ei = 0 it follows that ¯̂y = ȳ. So we can write:∑
y2
i =

∑
ŷ2
i +

∑
e2
i (5.1)

and: ∑
(yi − ȳ)2 =

∑
(ŷi − ȳ)2 +

∑
e2
i . (5.2)

We de�ne the following notation:

SSTot =
∑

(yi − ȳ)2,

SSreg =
∑

(ŷi − ȳ)2,

SSres =
∑

e2
i .

These quantities are called sums of squares. Thus (5.2)
can be rewritten:

SSTot = SSreg + SSres, (5.3)

equation which is called the Sum of Squares decompo-
sition.
Dividing by n turns (5.3) into:

var(y) = var(ŷ) + var(e) (5.4)

which is called the variance decomposition formula.

Proposition 5.1. SSres and SSreg are independently

distributed with SSres/σ
2 ∼ χ2

n−2, and under H0 :
β1 = 0, SSreg/σ

2 ∼ χ2
1.

Proof. We already know that (n − 2)σ̂2/σ2 ∼ χ2
n−2.

As (n − 2)σ̂2/σ2 = SSres/σ
2 we have a part of the

result.
Besides we use again the Cochran's theorem. Let

ỹ =
1

σ
(y − µ(x1))

where
µ(x1) = (µ(x11), µ(x21), . . . , µ(xn1))′.
It is clear that ỹ ∼ N (0,1n). Hence it follows that
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the projection PV1(ỹ) is N (0, PV1)distributed, where
V1 = V{1,x1} is the subspace generated by 1 and x1.

Since µ(x1) = β01 + β1x1, we have PV1
(ỹ) =

1

σ
(ŷ −

µ(x1)).

The projection P1(ỹ) on V{1} is given by 1

σ
(ȳ−µ(x̄1)1).

This allows to write:

PV1(ỹ)− P1(ỹ) =
1

σ
(ŷ − ȳ1)− 1

σ
(µ(x1)− µ(x̄1)1).

Since PV1
P1 = P1PV1

= P1, PV1
−P1 is the projection

onto the subspace orthogonal to 1 inside V1,and its
rank is one. In addition (PV1−P1)(ỹ) isN (0, PV1−P1)

distributed, and thus the distribution of
1

σ
(ŷ − ȳ1) is

N (
1

σ
(µ(x1)− µ(x̄1)1), PV1

− P1).

Finally note that, under H0 : {β1 = 0}, µ(x1) =

µ(x̄1)1, and consequently
1

σ
(ŷ− ȳ1) = (PV1

−P1)(ỹ)

and ‖ 1

σ
(ŷ− ȳ1)‖2 = ‖(PV1 −P1)(ỹ)‖2 ∼ χ2

1. Thus we

have
1

σ2

∑
(ŷi − ȳ)2 = SSreg/σ

2 ∼ χ2
1. Moreover, by

orthogonality of e and (ŷ − ȳ1), SSres and SSreg are
independent.

In the ANOVA table MS (Mean Square) are SS (Sum
of squares as de�ned just after (5.2)) normalized by
their degrees of freedom and we use notation:

MSreg = SSreg/1

MSres = SSres/(n− 2).

Corollary 5.2. Under H0 : β1 = 0, the rate F =
MSreg/MSres is F1,n−2 distributed, where F1,n−2 de-

notes the Fisher distribution with 1 and n− 2 degrees

of freedom.

Remark 5.3. The test based on F and the one us-
ing β̂1/s1 are identical: it can be proven that F =

(β̂1/s1)2. Recall also that F1,ν may be seen as the
distribution of the square of a Tν-distributed variable.

This test is displayed by the ANOVA table given be-
low.

Source SS d.f. MS F p-value

Regression SSreg 1 MSreg F =
MSreg

MSres
P (F1,n−2>F )

Error SSres n-2 MSres

Total SSTot n-1

where SS stands for Sum of Squares, MS for Mean

Squares, and we recall that SSreg =
∑

(ŷi−ȳ)2, MSreg =

SSreg

1
, SSres =

∑
e2i , MSres =

SSres

n− 2
and SSTot =∑

(yi−ȳ)2.

The Anova table provided by R for our dataset trees3
is given by:

***************************************

anova(reg_trees3)

Analysis of Variance Table

Response: Volume

Df Sum Sq Mean Sq F value Pr(>F)

Height 1 2901.2 2901.19 16.165 0.0003784

Residuals 29 5204.9 179.48

***************************************

Hence we get that SSreg = 2901.2 = MSreg and
SSres = 5204.9 with 29 degrees of freedom. Conse-
quently MSres = 5204.9/29 = 179.48. Recall that we

get above t-value for Height
β̂1

s1
= 4.021. It can be

checked that the values of
( β̂1

s1

)2

and
MSreg
MSres

up to

computational approximations are actually the same.

5.2 The R-squared and adjusted
R-squared coe�cients

The R-squared and adjusted R-squared are indices which
measure the accuracy of �tting the data by linear re-
gression.

De�nition 5.4. The R-squared coe�cient is de�ned by:

R2 =
var(ŷ)

var(y)
(5.5)

and is usually called coe�cient of determination.

Thus the R2 coe�cient gives the variance part ex-
plained by the regression. R2 provides an information
about the extent to which the points of the scatterplot
are close to the regression line. The larger the value
of R2, the closer to the regression line are the points.
Some properties:

• 0 ≤ R2 ≤ 1. The larger the value of R2, the
better the goodness of �t.

• R2 = 0 means that β̂1 = 0, that is the estimated
regression line is horizontal. In other words the
simple linear regression doesn't bring any infor-
mation about the variations of Y .

• R2 = 1 means that ei = 0 for i = 1, . . . , n. That
is all the points are aligned and the line is the
regression line.

• It is straightforward to show thatR2 = ρ2(y,x1) =
ρ2(y, ŷ). This follows from:

var(ŷ) = var(β̂01 + β̂1x1)

= β̂ 2
1 var(x1)

= ρ2(y,x1)
var(y)

var(x1)
var(x1),

and:

ρ2(y, ŷ) = ρ2(y, β̂01 + β̂1x1)

= (sign(β̂1))2ρ2(y,x1).
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• We can easily see that

F =
MSreg
MSres

= (n− 2)
R2

1−R2

which gives a third formulation for the test of
β1 = 0.

Note that we can write R2 = 1 −
∑
e2
i∑

(yi − ȳ)2
. Cor-

recting for the degrees of freedom gives the so-called
adjusted R2.

De�nition 5.5. The adjusted R-squared coe�cient is
de�ned by:

R2
a = 1−

∑
e2
i /(n− 2)∑

(yi − ȳ)2/(n− 1)

= 1− n− 1

n− 2
(1−R2).

The adjusted R-squared coe�cient is interesting mainly
in multiple regression (replacing in the just above def-
inition (n − 2) by (n − p − 1) with p the number of
variables) for the comparison of models with di�erent
numbers of variables.

Using R software, signi�cance tests, estimates of stan-
dard deviations, R2 and R2

a values are simply provided
by the command summary. For the regression of Vol-
ume on Height we get:

***************************************

summary(reg_trees3)

Call:

lm(formula = Volume ~ Height, data = trees3)

Residuals:

Min 1Q Median 3Q Max

-21.274 -9.894 -2.894 12.068 29.852

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.1236 29.2731 -2.976 0.005835

Height 1.5433 0.3839 4.021 0.000378

Residual standard error: 13.4 on 29 degrees of freedom

Multiple R-squared: 0.3579,Adjusted R-squared: 0.3358

F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784

***************************************

Let us notice that, although the link between Height
and Volume is statistically signi�cant, R2=0.3579 is a
rather weak value and thus the relationship between
the two variables is not very tight.

6 Residuals and diagnostic elements

We discuss in this section several types of residuals.
For this we introduce h-values and present tools to
investigate the in�uence of each observation on the
�nal estimation. We are also interested in the extent
to which each observation is either well explained or
not by the estimated model.

6.1 Residuals and h-values

Let's recall that

yi = β0 + β1xi1 + εi (6.1)

ŷi = β̂0 + β̂1xi1 + ei. (6.2)

So we can see the residuals ei are �estimates� of the
errors εi. Nevertheless, although they are gaussian,
the residuals do not exhibit exactly the same behaviour
as the errors: in particular they are neither identically
distributed
nor independent as stated by the following proposition.

Proposition 6.1. The vector e = (e1, . . . , en)′ is gaus-
sian and

ei ∼ N (0, σ2(1− hii)) (6.3)

and for i 6= j, cov(ei, ej) = −σ2hij.
For any i and j, hij is de�ned by:

hij =
1

n

[
1 +

(xi1 − x̄1)(xj1 − x̄1)

var(x1)

]
. (6.4)

Note that for i = j we get

hii =
1

n

[
1 +

(xi1 − x̄1)2

var(x1)

]
(6.5)

and we use to write hi instead of hii. The values hi
are often called h-values or hat-values and the matrix
H = (hij) is the hat-matrix. It can be checked that
ŷ = Hy, and that H is symetric and idempotent: H is
in fact the projection matrix on V1 = V{1,x1} which
is the subspace generated by 1 and x1. We will go in
more details about the hat-matrix when dealing with
the multiple linear regression.
To overcome the defects of the raw residuals, several
modi�ed residuals are proposed in the literature and
implemented in usual statistical softwares. In partic-
ular we have:

• Standardized residuals:

ti =
ei

σ̂
√

1− hi
.

• Studentized residuals or cross-validated resid-
uals or rstudents residuals:

t∗i =
ei

σ̂(i)

√
1− hi

.

where σ̂ =

√
σ̂2 and σ̂(i) is the same but calcu-

lated in the model �tted without the i-th obser-
vation (xi1, yi).

Given that the model is true, it can be proven that
t∗i is Tn−3−distributed. This result would appear sur-
prising: indeed, since ei is correlated with ej for j 6= i,
it is reasonable to suspect that ei is correlated with
σ̂(i). The proof will be outlined in the multiple regres-
sion part.
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In the standard case where, as n goes to ∞, x̄1 and
var(x1) are bounded, asymptotically the residuals ei
are i.i.d. and N (0, σ2)-distributed. Likewise, the stan-
dardised residuals are also asymptotically i.i.d. and
N (0, 1)-distributed.

Remark 6.2. Whenever faced with a real dataset, it is
advisable to plot data and residuals. Di�erent datasets
can result in the same regression line and the same R2

but dramatically di�erent �tting (see Fig. 8). Plotting
residuals may give more information about �tting or
reveal some structure and lead to question the model.
Residuals also possibly show that some observations
play a particular role in the �tting (in�uent observa-
tions), or are badly explained by the regression line
(outliers). We detail these points in the following para-
graph.
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Fig. 5: Standardized residuals for the regression of Vol-
ume on Height
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Fig. 6: Studentized residuals for the regression of Vol-
ume on Height

Fig. 5 and 6 give plots of standardized residuals and
studentized residuals in the regression of Volume on
Height for the black cherry trees dataset. When scru-
tinizing the di�erences (see Fig. 7), we note that they
are signi�cantly marked for observations numbered 22,
25, 28, 30, 31, and the di�erence is larger for the lat-
ter observation. It appears that, except for the fact

that they are globally increasing, the residuals don't
exhibit any clear structure. Let's observe also that
t∗31 = 2.622 and that P (|T28| > 2.622) ' 0.007, but
we will see that this is not enough to conclude that
observation 31 is not consistent with the model.
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Fig. 7: Di�erences studentized-standardized residuals

6.2 Four datasets which result in the
same regression characteristics

Tomassone and al. [14] build several datasets where
the regression lines are the same, as well as the resid-
uals standard errors and the R2 coe�cients: see Fig.
8. Since σ̂2 is the same for the four regressions, it fol-

lows also that the estimated covariance matrices of β̂
are identical. Using R we plotted the datasets and the
regression lines, see �g. 8. The lm procedure of R on
the �rst dataset (x1,ya) gives the following results:

***************************************

Call:

lm(formula = ya ~ x1)

Residuals:

Min 1Q Median 3Q Max

-5.5245 -1.6734 -0.2616 2.3119 5.4835

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5248 2.6662 0.197 0.84678

x1 0.8082 0.1701 4.750 0.00031

---

Residual standard error: 3.223 on 14 degrees of freedom

Multiple R-squared: 0.6171, Adjusted R-squared: 0.5898

F-statistic: 22.57 on 1 and 14 DF p-value: 0.0003102

***************************************

Except for the quantiles of residuals, we get precisely
the same results for the estimated regressions calcu-
lated on (x1,yb), (x1,yc) and (x1,yd).
It would appear surprising that these four rather dif-
ferent datasets lead to the same R2 value. It must be
noted that R2 is of interest as long as the usual as-
sumptions of a linear regression are satis�ed. Looking
at the plots gives evidence that dataset (a) is consis-
tent with these assumptions and that it is not the case
for (b), (c) and (d). The mean function seems nonlin-
ear in (b) while in (c) there is an observation which
plays a particular role and which is unconsistent with
the other ones, and in (d) the variance of the error
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seems to be increasing as x1 is growing. All this em-
phasizes the importance of a graphical representation
of data.
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Fig. 8: Four datasets resulting in identical regression
lines, residuals standard errors and R-squared
(from Tomassone et al. [14]).

6.3 Diagnostic elements, outliers,
observations with high leverage
e�ect, in�uent observations

Once a linear regression has been �tted to data, an
important task to be carried out is what is called di-
agnostic's analysis. It consists in the analysis of resid-
uals to detect particular observations:

- Observations which are badly explained by the
model (outliers): their residuals are too high and
inconsistent with the model.
- Observations with high leverage e�ect. This
means that moving such an observation results
in a markedly di�erent model.
- In�uent observations. An observation is said in-
�uent if dropping out this observation leads to a
�tted model signi�cantly di�erent from the model
�tted with the whole dataset.

For each of the three types of observations, indicators
are de�ned in the literature to help detection.

• Outliers. The rstudent residuals are usually the
main tool to detect outliers. Each rstudent t∗i is
Tn−3−distributed when the model (1.11) is cor-
rect. This will be made clearer when studying

multiple regression where it is shown that in the
model y = β0 + β1x1 + δ I{x1 = xi1} the test
statistic of H0 : {δ = 0} is Tn−3−distributed un-
der H0. In practice we consider the highest t∗i ,
say t∗max, and the corresponding observation is
declared outlier when |t∗max| is higher than the
100 × (1 − α/2n)-quantile of the distribution of
max(|t1|, |t2|, . . . , |tn|, ) under H0 :{ the model
(1.11) is correct}. In fact we can't compute the
quantile, but using the Bonferroni inequality we
get an approximation for this quantile given by
the 100× (1−α/2n)-quantile of the Tn−3 distri-
bution.

• Observations with high leverage e�ect. The
way to detect this type of observations is to use
hat-values hi. By the idempotence of H we get

hi =
∑
j

h2
ij

= h2
i +

∑
j 6=i

h2
ij ,

from which, using also (6.5), it comes that 1/n ≤
hi ≤ 1.
Now from ŷ = Hy it follows

ŷi =
∑
j

hijyj

= hiyi +
∑
j 6=i

hijyj .

This latter equality shows that when hi is close
to 1, which happens when xi1 is far from x̄1,
ŷi is close to yi. That is observations remote
from the mean x̄1 show high hi and attract the
regression line. A consequence is that when such
an observation is moved around its location, the
regression line moves in a similar way.

As
∑

hi = Tr(H) = 2, the mean value of the hi

values is 2/n, and an observation is said to have

a high leverage e�ect when hi ≥ 2
2

n
.

• In�uent observations. As said in the begin-
ning of this subsection, an observation is said to
be in�uent if the �tted model without this ob-
servation is signi�cantly di�erent from the model
�tted with the whole set of observations. A num-
ber of indicators of this di�erence were de�ned:
among these are the Cook's distance, the d�tts,
dfbeta... These indicators focus on the variation
of di�erent characteristics of the �tting. Cook's
distance and d�tts focus on the gap between the
values of (ŷi, i = 1, 2, . . . , n) in the two models,

while dfbeta compares β̂, the estimated and β̂(i),
where the subscript (i) stands for an estimate ob-
tained without the i−th observation.
Below we use only the Cook's distance Di. A
computation shows that Di can be written in a
very simple way:

Di =
t2i
2

hi
1− hi

.
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Then when Di > 4/(n − 2) the i-th observation
is declared in�uent.

6.4 Diagnostic analysis on a toy dataset

The Fig. 9 illustrates the ideas of diagnostic analysis
on an arti�cial toy dataset. It can be shown that:

• The highest rstudent is t∗13 = 4.349. The Bon-
ferroni approximation to the 5% critical value is
given by c∗ = 3.556. Hence observation 13 is
considered as an outlier. The following rstudent
is t∗18 = 2.188 and can't be declared as outlier.

• The highest h-value is h19 = 0.519, the follow-
ing one is h18 = 0.176. The threshold is 0.211.
Therefore we see that there is only one observa-
tion, observation 19, with high leverage e�ect.

• The threshold for the Cook's distance is 0.235,
and only observations 13 and 18 exhibit distance
over the threshold: d18 = 0.433 and d13 = 0.317.
So in view of this criterium they are the only
ones which are considered as in�uent. Using df-
�ts coe�cients leads to the same conclusion. It
is worthwhile to note that 19 is not an in�uent
observation.

In summary:
- 13 is both an outlier and in�uent observation, but
has not a high leverage e�ect.
- 18 is an in�uent observation without high leverage
e�ect and is not an outlier.
- 19 is an observation with high leverage but is neither
in�uent nor an outlier.
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Fig. 9: Diagnostics: an arti�cial dataset with outliers,
in�uent data and data with high leverage ef-
fects

Valuable references about diagnostics analysis include,
among others, R. Cook and S. Weisberg [4] and D. A.
Besley, E. Kuh and R. E. Welsch [3].

6.5 Diagnostic analysis for black
cherries trees data with R software

R provides all the functions needed for diagnostics
analysis and associated graphical procedures. For in-
stance for the regression of Volume on Heigth in the
black cherries trees data, we get h-values, �tted values,
standardized residuals and studentized residuals by:

***************************************

hatvalues(reg_trees3)

fitted(reg_trees3)

rstandard(reg_trees)

rstudent(reg_trees3)

***************************************

and indicators needed to detect in�uent observations
are provided by:

***************************************

dffits(reg_trees)

dfbeta(reg_trees3)

cooks.distance(reg_trees3)

***************************************

or simply:

***************************************

influence.measures(reg_trees3)

***************************************

The library "car" allows synthesized plots of the rele-
vant information:

***************************************

influenceIndexPlot(reg_trees3,vars=

c("Studentized","Cook","hat"),id.n=4)

***************************************

see Fig. 10.
The reader is invited to check that, for the regres-
sion of Volume on Heigth, observations 1,2,3 and 31
have high leverage e�ect (threshold 0.129). There is
no outlier: Bonferroni threshold 3.491, with α = 5%,
for the highest absolute value of rstudents is 3.491.
The Cook's distance considers observations 30 and 31
as in�uent observations (threshold 0.138).

7 Departures from the basic model
assumptions

Statisticians know that in "real life" the model as-
sumptions are rarely totally satis�ed. Very often they
are faced with departures from model assumptions.
This point is the subject of lengthy developments: how
to deal with the non-linearity of the mean function
µ(x1), non-normality of the errors εi, heteroscedastic-
ity (non-constant variance), random regressor? These
issues are fundamental when faced with real data, and
are sometimes neglected. Since this paper is intended
above all to be a motivating introduction to a par-
ticular �eld of statistics, we seize the opportunity to
brie�y indicate and outline directions that deal with
departures from the model assumptions.
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Fig. 10: Studentized residuals, Cook's distance and
hat-values for Volume regression on Height

7.1 Non-linearity

When the relationship between the mean of y and x1

in non-linear a possible strategy is to apply a transfor-
mation to the response variable y, or to the regressor
x1, or to both y and x1. Usual transformations are
Loge(x), 1/x,

√
x. It is also possible to choose a trans-

formation in the family of powers of y. It is what does
the Box-Cox procedure. The family is de�ned by:

y(λ) =


yλ − 1

λ
if λ 6= 0

ln(y) if λ = 0.

The parameter λ can be estimated together with β us-
ing the method of maximum likelihood. This amounts
to choose the λ value which minimizes the sum of
squared residuals SSres(λ)=

∑
e2
i (λ) where the ei(λ)

are the residuals coming from the �tting of the λ-
model. That is we select the value of λ for which the
�t is the best. Note that the transformations are not
always de�ned when y < 0, but this di�culty can be
circumvented by adding a positive constant to each of
the y values.
It can happen that the usual transformations are un-
able to linearize the mean function. In this case a
sensitive strategy is to rely on multiple linear regres-
sion using an approximation of the mean function: this

can be for instance an approximation by a constant
piecewise function, or a polynomial function or a spline
function.

7.2 Non-normality

When the errors are non-gaussian, we use nevertheless
the methodology developed above, and the main con-
sequence is that β̂ is non-gaussian and is not asymptot-
ically e�cient. But β̂ is still unbiased, and is BLUE;
that is exhibits the best variance in the class of linear
unbiased estimates.
Thus when the sample size n is small, the test pro-
cedures, con�dence intervals and prediction intervals
discussed above can't be used since the T distribu-
tions are no longer relevant.
When on the contrary n is large, β̂ is approximately
gaussian, precisely (β̂i − βi)/si ≈ N (0, 1), i = 0, 1. As
the Tn distribution and N (0, 1) become close, when n
is large, the tests and CI procedures used in the gaus-
sian case remain valid. Note that this is not the case
for prediction intervals.
Let's remark also that we can at �rst apply transfor-
mations such as those presented in the previous para-
graph. Such transformations can reduce substantially
the non-normality.

7.3 Heteroscedasticity

The basic model (1.11) assumes homoscedasticity; that
is Var(εi) doesn't depend on xi1. When it is not the
case, that is Var(εi) = σ2(xi1), the developments above
based on a unique σ2 don't make sense.
Once again it is possible that a transformation of y
makes the variance more homogeneous and overcome
the di�culty. In some special situations we can �nd
out an adhoc way to return to the basic homoscedastic
model. Another method consists in using weighted
linear regression, that is minimizing:

SW =
∑

wi(yi − β0 − β1xi1)2

where wi = 1/σ2
i and σi =

√
Var(εi). Of course if the

variances are unknown we must substitute estimates
σ̂2
i (to be de�ned) to σ2

i .
The weighted linear regression is in fact a particu-
lar case of generalized linear regression, i.e. GLS,
which deals with the more general situation where the
variance-covariance matrix of ε is di�erent from σ2 In,
that is we allow non-equal variances as well as auto-
correlation of errors.

7.4 Random regressor

We can be faced with situations where the x1- values
are not �xed deterministic values: the set {x11, . . . , xn1}
can be a n−sample for the random regressor which we
now denote by X1. In this context the standard re-
gression linear model is de�ned in the following way.
We have:

Y = β0 + β1X1 + ε,
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and we assume that:

E(ε |X1) = 0 a.s., (A.1)

and Var(ε |X1) = σ2 a.s. (A.2)

It can be easily checked that (A.1) implies E(ε) = 0
and that under (A.1) and (A.2) we have Cov(ε,X1) =
0.
Furthermore we assume that the conditional distribu-
tion of ε given X1 is gaussian, which in turn can be
precisely written L(ε |X1) = N (0, σ2). From this it
follows that the unconditional distribution of ε is also
N (0, σ2).
The reader can note that the model with random re-
gressor is closely mimicking the model with �xed de-
sign.

The observations are given by (xi1, yi), i = 1, . . . , n,
and are values of n i.i.d. couples of variables (Xi1, Yi),
distributed as (X1, Y ). In particular, this assumption
excludes any autocorrelation in (εi)i=1,...,n as well as
in (Xi1)i=1,...,n and ensures that, for i 6= j, Xi1 and εj
are independent.
We can't go into too many details on the random re-
gressor issue. Thus we merely outline below some im-
portant points.

• Conditional statistical inference.
When we perform statistical inference condition-
ally upon the observed values {x11, . . . , xn1} of
the random regressor X1, it is clear that all the
results presented above for the least squares me-
thod hold true. The estimate β̂ is unbiased,
gaussian and optimal in the class of unbiased es-

timates. Moreover σ̂2 is unbiased, (n− 2)σ̂2/σ2

is χ2
n−2-distributed. β̂ and σ̂2 are independent

and consequently the studentized β̂i, i = 0, 1,
are Tn−2−distributed. The CI and PI intervals
designed above thus remain valid.

• Unconditional statistical inference.
When we are concerned with unconditional in-
ference, we have to be careful, even if the most
part of the least squared methodology remains
valid.
It must be noted that the unconditional distribu-
tion of β̂ is not necessarily gaussian, (n−2)σ̂2/σ2

is χ2
n−2-distributed but the independence between

σ̂2 and β̂ is not ensured. Nevertheless, in spite
of these points, the conditional properties of the
least squared estimates imply that the studen-
tized parameter estimates (β̂i − βi)/si, i = 0, 1,
are still Tn−2−distributed. Hence the tests and
CI for βi, i = 0, 1, are still valid. A similar ar-
gument leads to the same conclusion when we
are concerned with the CI of µ(x0

1), where x0
1 is

a new observation of X1, or the PI of Y (x0
1), or

even the one of Y 0 = β0 + β1X
0
1 + ε.

• When ε and X1 are correlated.
We saw above that (A.1) and (A.2) entail E(ε) =

0 and Cov(ε,X1) = 0. Thus we could be inter-
ested in substituting to (A.1) the assumption:

Cov(ε,X1) = 0. (A.1b)

Under (A.1b) it is clear that E(ε|X1) 6= 0 but
E(ε) = 0 can possibly be preserved.
It is worthwhile to note that, while (A.1b) is not
much weaker than (A.1), we are not ensured un-

der (A.1b) that β̂ is unbiased. Nor are we en-
sured that the usual �nite sample properties hold
true.
It is essential also to note that when ε and X1

are correlated, then the least squared estimates
are biased and unconsistent. As a consequence
the usual test procedures and con�dence inter-
vals are not valid.
It is not that easy to detect a correlation be-
tween ε and X1. And when such a correlation
is suspected, to overcome this shortcoming is
not always possible. A method (instrumental
variables method) to do that has been devel-
opped by econometricians: it is based on the
existence of other variables Z1, . . . , Zq, q ≥ 1,
which are strongly correlated with X1 and un-
correlated with ε. As it would be out of the
scope of this paper to go into details about this
method, we refer readers interested in this topic,
for instance, to [8] or [12].
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