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Rigidity of Discontinuous Groups
for Threadlike Lie Groups

Fatma Khlif

Abstract

Let G = Gn be the (n + 1)-dimensional threadlike Lie group, H an
arbitrary closed connected Lie subgroup of G and Γ ⊂ G an abelian
discontinuous group for the homogeneous space G/H. We provide in
this work an explicit description of the parameter space R(Γ, G, H)
and of the deformation space T (Γ, G, H) in the particular case where
n = 3. Furthermore we discuss the local rigidity of T (Γ, G, H) and
make a link with the Baklouti conjecture. This paper provides, through
a concrete case study, a gentle initiation to the theory of deformations
of Lie group actions.

MSC 2010. Primary 57S30; Secondary 22F30.

1 Introduction

Given a space M with an action of a connected Lie
group G, a fundamental problem is the study of the
geometry and dynamics of subgroups of G acting prop-
erly discontinuously on M . Topologizing the set of
subgroups, or the set of subgroups isomorphic to a
given group Γ, or the set of all closed subgroups of
a topological group, etc, leads to notions of deforma-
tions and parameterizations of group actions. In our
context, we will fix Γ to be a finitely generated discrete
group, G a connected Lie group and we will consider
all embeddings of Γ into G. An embedding is an injec-
tive homomorphism. We can then endow Emb(Γ, G) ⊂
Hom(Γ, G) with the topology of point-wise convergence.
If G acts on a space M , we then define the parameter
space:

R(Γ, G,M) := {ϕ ∈ Emb(Γ, G) | ϕ(Γ) acts
properly discontinuously on G/H} . (1.1)

Generally we assume M to be Hausdorff and locally
compact.

A key classical example is to consider a Lie group
G acting on a Riemannian manifold M by isometry.
In this case Γ ⊂ G acts properly discontinuously on
M if and only if it is a discrete subgroup. When M
is a homogeneous space X = G/H, then R(Γ, G,X)
becomes the parameter space of discontinuous group
actions on X.

Definition 1.1. A discontinuous group of a homoge-
neous space X is a a discrete group acting properly
discontinuously on X.

The most basic but compelling example in the the-
ory of discontinuous groups is the Teichmuller space.
Here X = H := {z ∈ C : Imz > 0} is the upper com-
plex half-plane, and G = PSL(2, R) = Aut(H) is its
group of biholomorphisms (or automorphisms). Fix Γg

to be the finitely generated group

Γg =
{
a1, . . . , ag, b1, . . . , bg

∣∣∣ ∏[ai, bi] = 1
}

As we know Γg is isomorphic to the fundamental group
of a compact Riemann surface of genus g. A discrete
embedding of ϕ : Γg ↪→ G is called a Fuchsian group,
and by uniformization the quotient of H by ϕ(Γg) is a
Riemann surface of genus g. Since any two conjugate
subgroups of G yield two isomorphic Riemann surfaces,
then we are led to consider the identification space

T (Γg, G,H) := R(Γg, G,H)/ ∼

where ϕ1 ∼ ϕ2 if and only if ϕ2 = gϕ1g
−1 for some

g ∈ G.
Proposition 1.2. T (Γg, G,H) is homeomorphic to the
Teichmuller space of Riemann surfaces of genus g. This
is a ball of dimension 6g − 6.

The study of the Teichmuller space, or equivalently
the study of spaces of discontinuous co-compact Fuch-
sian groups, and their associated coarse moduli of Rie-
mann surfaces, has been one of the most thriving fields
of algebraic geometry, mathematical physics and alge-
braic topology in the last two decades. The Teichmuller
space turns out to be in fact a connected component of

Hom(π1(S), PSL(2,R))/PSL(2,R)

the space of all homomorphism of π1(S), S a compact
surface of genus g, up to conjugation. The study of the
space Hom (π1(S), G) /G for more general Lie groups is
the subject of a vast and rich literature. The notion
of the Teichmuller space in the context of homogeneous
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spaces has been defined by Kobayashi ([14]). As before,
start with a finitely generated Γ, a connected Lie group
G and H a closed connected subgroup of G. Then G
acts on G/H by left translation. Suppose that Γ is
discontinuous for the homogenous space G/H. The as-
sociated parameter space is denoted R(Γ, G,H), which
we recall is again:

R(Γ, G,H) :=ϕ ∈ Hom(Γ, G)

∣∣∣∣∣∣
ϕ is injective and ϕ(Γ) acts
properly discontinuously
on G/H

 .
(1.2)

Let now ϕ ∈ Hom(Γ, G) and g ∈ G, we consider the
element ϕg of Hom(Γ, G) defined by ϕg(γ) = gϕ(γ)g−1,
γ ∈ Γ and we consider the action of G on Hom(Γ, G)
given by:

g · ϕ = ϕg. (1.3)
It is clear that R(Γ, G,H) is G-invariant, then we de-
fine the deformation space of the action of Γ on the
homogeneous space G/H, denoted by T (Γ, G,H), by
the orbit space under the action of G. Let then:

T (Γ, G,H) = R(Γ, G,H)/G.

Unlike the Teichmuller space, T (Γ, G,H) is gener-
ally not a manifold but has singularities. More particu-
larly, it might have isolated points. A point ϕ0 : Γ ↪→ G
is isolated if its orbit under G is open in Hom(Γ, G).
This leads to the notion of rigidity of discontinuous
groups first introduced by T. Kobayashi in [11].
Definition 1.3. For ϕ ∈ R(Γ, G,H), the discontinu-
ous group ϕ(Γ) for the homogeneous space G/H is said
to be locally rigid as a discontinuous group for G/H, if
the orbit of ϕ through the inner conjugation is open in
R(Γ, G,H).

In other words, a subgroup Γ of G is deformation
rigid if for any continuous paths ϕt of embeddings of
Γ into G starting with ϕ0 = id, ϕt is conjugate to ϕ0.
One of the most beautiful and potent results from the
early sixties give a characterization of local rigidity for
semi-simple Lie groups.
Theorem 1.4. ([8, 17]) A cocompact discrete subgroup
Γ in semi-simple Lie groups without compact nor SL(2,R)
nor SL(2,C) local factors is deformation rigid.

The notion of rigidity is crucial in understanding the
local topology of deformation spaces. In this paper we
study the local rigidity of a special family of Lie groups,
the so-called threadlike groups. These are introduced
in §3. We will show that local rigidity globally fails
on the parameter space for threadlike Lie groups. This
confirms in this case a general conjecture of Ali Baklouti
[6]:

Conjecture 4.1. Let G be a connected simply con-
nected nilpotent Lie group, let H be a connected sub-
group of G, and let Γ be a non-trivial discontinuous

group for G/H. Then local rigidity globally fails to
hold on the parameter space.

For particular situations of connected and simply
connected nilpotent Lie groups, it was proved that the
conjecture holds ([2, 3, 4, 5, 6, 7]).

The present paper is organized as follows. In §2 we
summarize key properties of the parameter and defor-
mation spaces associated to the action of a discontin-
uous subgroup on exponential homogeneous spaces. In
§3, we record some basic results about threadlike Lie
groups. In §4, we provide an explicit description of the
parameter and deformation spaces for any discontinu-
ous abelian subgroup acting on a homogeneous space of
a four dimensional threadlike Lie group. The purpose
of the final section is to study the local rigidity of the
deformation space making use of all previous results.

2 Preliminaries

Let us first recall some notation and results which are
of relevance to this work

2.1 Proper and free actions.
The notion of proper and free actions is fundamental
to deformation theory and is of direct relevance to the
important problems studied in Lie group theory.

We start by recording some definitions and useful
results.
Definition 2.1. Let G be a connected Lie group and
H be a closed connected subgroup of G. The action
of a connected subgroup L of G on the homogeneous
space G/H is said to be:
(i) Proper if, for each compact subset S ⊂ G the set

SHS−1 ∩ L is compact.
(ii) Free (or fixed point free ) if, for each g ∈ G, the

isotropy group gHg−1 ∩ L is trivial.
(iii) Properly discontinuous if, L is discrete and the

action of L on G/H is proper. If, moreover the
action of L on G/H is free, we say that L is dis-
continuous for the homogeneous space G/H.

In [9], T. Kobayashi made a bridge between the ac-
tion of a discrete group and that of a connected group
by noticing that if Γ is a co-compact discrete subgroup
of a connected subgroup L, then the action of L on
G/H is proper if and only is the action of Γ on G/H
is properly discontinuous. Using the notion of the syn-
detic hull, this fact greatly contributes to simplify the
explicit description of the parameter space.

2.2 Characterization of the parameter and
deformation spaces.

Let g denote a n-dimensional real exponential solv-
able Lie algebra, G will be the associated connected
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and simply connected exponential Lie group. Exponen-
tial means that the exponential map exp : g → G
is a global C∞-diffeomorphism from g into G. Let
log denote the inverse map of exp. The Lie algebra
g acts on g by the adjoint representation ad, that is
adT (Y ) = [T, Y ], T, Y ∈ g. The group G acts on g
by the adjoint representation Ad, defined by Adg =
exp ◦ adT , g = expT ∈ G. Let H = exp h be a closed
connected subgroup of G. Let Γ be an abelian discrete
subgroup of G of rank k and define the parameter space
R(Γ, G,H) as given in (1.2). Let L be the syndetic hull
of Γ which is the smallest (and hence the unique) con-
nected Lie subgroup of G which contains Γ cocompactly
(see [2]). Recall that the Lie subalgebra l of L is the
real span of the abelian lattice log Γ, which is gener-
ated by {log γ1, . . . , log γk} where {γ1, . . . , γk} is a set
of generators of Γ. The group G also acts on Hom(l, g)
the set of groups homomorphisms from l to g, by:

g ? ψ = Adg ◦ψ. (2.1)
The following useful result was obtained in [2].
Theorem 2.2. Let G = exp g be an exponential solv-
able Lie group, H = exp h a closed connected subgroup
of G, Γ a discontinuous abelian subgroup for the ho-
mogeneous space G/H and L = exp l its syndetic hull.
Then up to a homeomorphism, the parameter space
R(Γ, G,H) is given by:

R(l, g, h) = {ψ ∈ Hom(l, g) : dimψ(l) = dim l

and exp(ψ(l)) acts properly on G/H}.
The deformation space T (Γ, G,H) is likewise homeo-
morphic to the space T (l, g, h) = R(l, g, h)/Ad, where
the action Ad of G is given as in (2.1). Furthermore,
when G is completely solvable, the assumption on Γ to
be abelian can be removed.

3 On threadlike Lie groups

Throughout this section and unless a specific mention,
g := gn, n ≥ 2, designate the threadlike Lie algebra of
dimension n + 1 which admits a stratified basis B =
{X, Y1, . . . , Yn} with non-trivial Lie brackets:

[X, Yi] = Yi+1, i ∈ {1, . . . , n− 1}. (3.1)
The subspace g0 = R-span{Y1, . . . , Yn} is clearly the
one codimensional abelian ideal of g. The center z(g)
of g is however one dimensional and it is the space R-
span{Yn}.

Let G be the connected and simply connected Lie
group associated to g and exp := expG be the corre-
sponding exponential map. To seek simple notation,
we identify, from now on, the element exp(xX+ y1Y1 +
· · · + ynYn), x, yi ∈ R, 1 ≤ i ≤ n, of G by the column
vector t(x, y1, . . . , yn).

3.1 On the structure of some Lie subgroups.
We first look at the case of closed connected subgroup of
G. Thus, we only have to study the structure of the as-
sociated Lie subalgebra. Let then h be a p-dimensional

subalgebra of g, we are going to construct a strong Mal-
cev basis Bh of h extracted from B. Recall that a
family of vectors {Z1, . . . , Zm} is said to be a strong
Malcev basis of a Lie algebra l, (m = dim l) if ls = R-
span{Z1, . . . , Zs} is an ideal of l for all s ∈ {1, . . . ,m}.

We denote by h0 = h∩g0 and I h0
g0 = {i1 < · · · < ip0}

the set of indices i ∈ {1, . . . , n} such that h0 + gi =
h0 + gi+1, where (gi)1≤i≤n+1 is the decreasing sequence
of ideals of g given by:

gi = R−span{Yi, . . . , Yn}, i = 1, . . . , n and gn+1 = {0}.
(3.2)

We note for all is ∈ I h0
g0 , Ỹs = Yis +

n∑
r=is+1

αr,sYr ∈ h.

We get therefore that, if h ⊂ g0, Bh = {Ỹ1, . . . , Ỹp0}.

Otherwise, there exists X̃ = X +
n∑

r=1
xrYr ∈ h. Hence

Bh = {X̃, Ỹ1, . . . , Ỹp0}. We define the matrix of h writ-
ten in the basis B, denoted by Mh,B ∈ Mn+1,p(R)
as follows. We denote for every s ∈ {1, . . . , p0}, by
M s

h = t(0, . . . , 0, 1, αis+1,s, . . . , αn,s) and if h 6⊂ g0, we
denote by M0

h = t(1, x1, . . . , xn). We put therefore:

(i) If h ⊂ g0, then Mh,B = bM1
h , . . . ,M

p0
h c, where

this symbol merely designs the matrix constituted
of the columns M1

h , . . . ,M
p0
h .

(ii) If h 6⊂ g0 then if p = 1 we have Mh,B = M0
h .

Otherwise Mh,B = bM0
h , . . . ,M

p0
h c.

When h is not included in g0 and p ≥ 2, the following
lemma, will be of use in the sequel and permits to con-
struct a basis of g, said adapted to h, and which permits
to have a particular form of the associated matrix.
Lemma 3.1. [4] Let g be a threadlike Lie algebra and
let h be a p-dimensional Lie subalgebra of g such that
h 6⊂ g0 and p ≥ 2. Then there exists a basis B =
{X,X1, . . . , Xn} of g such that:

[X,Xi] = Xi+1 for all i = 1, . . . , n− 1,

[Xi, Xj ] = 0 for all i, j = 1, . . . , n
and h = R-span{X,Xn−p+2, . . . , Xn}.
The following Theorem, proved in [1], will be used

later and deals with the proper action on threadlike
nilpotent homogeneous spaces.
Theorem 3.2. Let G be a connected simply connected
special nilpotent Lie group, H and K are closed con-
nected subgroups of G. Then the following assertions
are equivalent:

i. K acts properly on G/H.
ii. The action of K on G/H has the fixed point prop-

erty, that is K ∩ gHg−1 = {e} for any g ∈ G.
iii. k ∩Adgh = 0 for any g ∈ G. Here h and k are the

Lie algebras of H and K respectively.
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4 Description of the deformation space

Let G = G3 be a threadlike Lie group, H a closed con-
nected Lie subgroup of G and Γ an abelian discontinu-
ous group for the homogeneous space G/H. This sec-
tion gives a complete description of the parameter space
R(Γ, G,H) and the deformation space T (Γ, G,H)

4.1 Description of Hom(Γ, G)
Our main result in this subsection consists in giving an
explicit description of Hom(Γ, G). Moreover, note that
the set of all injective homomorphisms from Γ to G
denoted by Hom0(Γ, G), rather than Hom(Γ, G) itself
will be of interest in the next section, merely because
it is involved in deformations. The following results
accurately determines the stratification of such sets.

Towards such a purpose, we fixe from now on a basis
B = {X, Y1, Y2, Y3} of g with non-trivial Lie brackets
defined in (3.1). Let Γ be a discrete subgroup of G
of rank k ∈ {1, . . . , 4} and {γ1, . . . , γk} a set of gen-
erators of Γ. Then any ϕ ∈ Hom(Γ, G) is determined
by ϕ(γj), j = 1, . . . , k. We obtain the injective map
Ψ : Hom(Γ, G) −→ gk = g× . . .× g defined by:

Ψ(ϕ) = (ϕg(γ1), . . . , ϕg(γk)) (4.1)
where ϕg = log ◦ϕ. So, we reduce our problem of the
description of Hom(Γ, G) to the determination of the
image of Ψ. From now on, we identify any element T =

xX +
3∑

i=1
yiYi ∈ g by the column vector t(x, y1, y2, y3),

and gk = g× . . .× g to the space M4,k(R).
We consider the sets:

H0,k =
{(−→0

N

)
∈M4,k(R) : N ∈M3,k(R)

}
'M3,k(R),

(4.2)
and for any j ∈ {1, . . . , k}:

Hj,k ={(
λ1T . . . λj−1T T λj+1T . . . λkT
z1 . . . zj−1 zj zj+1 . . . zk

)
∈M4,k(R)∣∣∣∣∣∣∣

tT ∈ R∗ × R2

(z1, . . . , zk) ∈ Rk,

(λ1, . . . , λ̌j , . . . , λk) ∈ Rk−1

 (4.3)

Proposition 4.1. With the same notation and hypothe-
ses, we have:

Hom(Γ, G) =
k⋃

j=0
Hj,k.

Proof. We begin by proving the following:
Lemma 4.2. Hom(Γ, G) is homeomorphic to

M ′4,k(R) = {bT1, . . . , Tkc ∈M4,k(R) : [Ts, Tr] = 0,
1 ≤ r, s ≤ k}.

Proof. Since ϕ ∈ Hom(Γ, G) satisfies:

ϕ(γr)ϕ(γs) = ϕ(γs)ϕ(γr) for all 1 ≤ r, s ≤ k, (4.4)

we get that:

[ϕg(γr), ϕg(γs)] = 0, for all 1 ≤ r, s ≤ k.

This implies that Ψ(Hom(Γ, G)) ⊂ M ′4,k(R). Let con-
versely bT1, . . . , Tkc ∈ M ′4,k(R), we can define a groups
homomorphism:

ϕ : Γ→ G; ϕ(
k∑

s=1
msγs) = exp(m1T1) · · · exp(mkTk),

mi ∈ Z, i = 1, . . . , k, in such a way that Ψ(ϕ) =
bT1, . . . , Tkc. Thus, Ψ(Hom(Γ, G)) = M ′4,k(R).

By identifying gk = g×. . .×g to the spaceMn+1,k(R),
we can easily see the continuity of Ψ. As for the con-
verse, we take bT1

j , . . . , Tk
jcj∈N a sequence of elements

of Ψ(Hom(Γ, G)) which converges to bT1, . . . , Tkc and
let ϕj , ϕ ∈ Hom(Γ, G) such that Ψ(ϕj) = bT1

j , . . . , Tk
jc

and Ψ(ϕ) = bT1, . . . , Tkc. So, for any r ∈ {1, . . . , k}
and any j ∈ N, we have ϕj(γr) = expT j

r which gives
that expTr = ϕ(γr). We thus arrive to the continuity
of Ψ−1.

The second step consists in giving an explicit de-

scription of M ′4,k(R). Let M =


x1 . . . xk

y11 . . . y1k

y21 . . . y2k

y31 . . . y3k

 ∈
M4,k(R). Recall from equation (4.4) that M ∈M ′4,k(R)

if and only if [Ts, Tr] = 0 where Ts = xsX +
3∑

i=1
yisYi

and Tr = xrX +
3∑

i=1
yirYi for any 1 ≤ s, r ≤ k, which

gives rise to the following equation:

xsyir−xryis = 0 for all 1 ≤ r, s ≤ k and all i ∈ {1, 2}.
(4.5)

In order to find the solutions of (4.5), we shall discuss
the two following dichotomous cases. Assume in a first
time that the first line of M is zero, that is xj = 0,
1 ≤ j ≤ k. In this case M satisfies (4.5) and obviously
belongs to M ′4,k(R). Suppose now that the first line
of M is not zero. There exists then j ∈ {1, . . . , k}
satisfying xj 6= 0. So, M ∈ M ′4,k(R) if and only if
there exists Λj = (λ1, . . . , λj−1, λj+1, . . . , λk) ∈ Rk−1

such that for s 6= j, we have Ts = λsTj . According to
this discussion, we get that M ′4,k(R) = ∪k

j=0Hj,k where
Hj,k, 0 = 1, . . . , k are as determined by equations (4.2)
and (4.3). This achieves the proof of the proposition.

Now, we determine a stratification of Hom0(Γ, G).
We prove the following.
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Proposition 4.3. Let k ∈ {1, . . . , 4}. If k = 4, then
Hom0(Γ, G) = ∅. Otherwise, there exists a finite set Ik

such that 0 ∈ Ik and

Hom0(Γ, G) =
∐

j∈Ik

Kj,k,

where for any k ∈ {1, 2, 3} we have:

K0,k =
{(−→0

N

)
: N ∈M0

3,k(R)
}
'M0

3,k(R). (4.6)

Here M0
n,m(R) denotes the set of all matrix of n rows,

m columns and of maximal rank. Moreover,
i. if k = 3, then I3 = {0}
ii. If k = 2 then I2 = {0, 1, 2, 3} and

K1,2 =



x 0
y1 0
y2 0
y3 y′3

 ∈M4,2(R) : xy′3 6= 0

 ,

K2,2 =




0 x
0 y1
0 y2
y′3 y3

 ∈M4,2(R) : xy′3 6= 0

 ,

K3,2 =



x λx
y1 λy1
y2 λy2
y3 y′3

 ∈M4,2(R) : λx 6= 0

λy3 − y′3 6= 0} .

iii. If k = 1, then I1 = {0, 1} and

K1,1 = H1,1

=
{(

x−→y

)
: x ∈ R∗, t−→y ∈ R3

}
' R∗ × R3

Proof. First observe that for all M ∈ Hom(Γ, G),
rank(M) ≤ 3. This gives that for k = 4, Hom0(Γ, G) =
∅. Let now k ∈ {1, 2, 3}, j ∈ {1, . . . , k} and M ∈ Hj,k.
It is not hard to check that rank(M) ≤ 2. In addition,
M is of maximal rank if and only if rank(M) = k. So,
it appears clear that if k = 3 , we have Hom0(Γ, G) ∩
Hj,3 = ∅ for all j ∈ {1, 2, 3} and then I3 = {0}. Sup-
pose now that k = 2 and choose in a first time M = x λx−→y λ−→y
y3 y′3

 ∈ H1,2, where x ∈ R∗, t−→y = (y1, y2) ∈ R2,

λ ∈ R and (y3, y
′
3) ∈ R2. The condition M is of max-

imal rank is equivalent to λy3 − y′3 6= 0. If further-

more we choose M =

 λx x
λ−→y −→y
y3 y′3

 ∈ H2,2 for some

x ∈ R∗, t−→y = (y1, y2) ∈ R2 and (y3, y
′
3) ∈ R2, we

get M is of maximal rank if and only if λy′3 − y3 6= 0.
Therefore:

Hom0(Γ, G) ∩H1,2 =M =

 x λx−→y λ−→y
y3 y′3

 ∈ H1,2 : λy3 − y′3 6= 0


and

Hom0(Γ, G) ∩H2,2 =M =

 λx x
λ−→y −→y
y3 y′3

 ∈ H2,2 : λy′3 − y3 6= 0

 .
It is then easy to see that Hom0(Γ, G) ∩ (H1,2 ∪ H2,2)
is equal to the disjoint union of the sets Kj,2, j = 1, 2, 3
defined above. So we end up with the following decom-
position:

Hom0(Γ, G) =
3∐

j=0
Kj,2.

Finally, if k = 1 then any homomorphism in H1,1 is
injective, therefore K1,1 = H1,1 and then

Hom0(Γ, G) = K0,1
∐

K1,1.

4.2 Description of the parameter space
R(Γ, G,H).

The most important problem in the study of the de-
formation space of discontinuous groups is the descrip-
tion of the parameter set R(Γ, G,H) given by equation
(1.2). Let G act on M ′4,k(R) by:

g ·M = Adg−1 ·M, g ∈ G, M ∈M ′4,k(R). (4.7)

Here we view Adg−1 as a real valued matrix for any
g ∈ G. In light of Theorem 2.2 and Theorem 3.2, the
following result is immediate:
Lemma 4.4. Let G = exp g be the four-dimensional
threadlike Lie group, H = exp h be a closed connected
subgroup of G and let L = exp l be the syndetic hull
of an abelian discrete subgroup Γ of G. Then the set
R(Γ, G,H) is homeomorphic to:

R(l, g, h) = {M ∈M ′4,k(R) :
rank(M d g ·Mh,B) = k + p for all g ∈ G},

where B = {X, Y1, Y2, Y3} and the symbol d merely
means the superposition of the matrices written through
B.
Proof. If M ∈ R(Γ, G,H) then M ∈ M0

4,k(R) which
gives that rank(M) = k. Now using Theorem 3.2, the
proper action of L on G/H is equivalent to the fact



4 Description of the deformation space 48

that l ∩ Adgh = {0} for any g ∈ G which means that
rank(M d g · Mh,B) = k + p. Note finally that the
condition rank(M) = k is irrelevant at this stage which
gives the result as was to be shown.
Proposition 4.5. Let G be the four-dimensional thread-
like Lie group and H a connected Lie subgroup of G.
Then:

R(Γ, G,H) =
∐

j∈Ik

Rj,k

where Rj,k = R(Γ, G,H) ∩ Kj,k. More precisely, one
has:

i. If k = 3, then R(Γ, G,H) = R0,3.

ii. If k = 2, then R(Γ, G,H) = ∐3
j=0 Rj,2.

iii. If k = 1, then R(Γ, G,H) = R0,1
∐
R1,1.

Proof. This result stems immediately from Proposition
4.3 which describes the structure of Hom0(Γ, G).

Our main upshot in this section is the explicit de-
scription of the parameter space R(Γ, G,H). For such
a study, we will state our results separately accord-
ing to the values of k = rank(Γ), p and to the po-
sition of H inside G. Firstly, we can suppose that
k 6∈ {0, 4} and p 6∈ {0, 4}. Now, we introduce the ma-
trix A(t), t ∈ R of (Adexp tX)|g0 written through the ba-
sis B0 = {Y1, Y2, Y3}. So a routine computation shows
that:

A(t) =

 1 0 0
t 1 0
t2

2 t 1

 . (4.8)

The following proposition deals with the description of
R0,k which coincides with the parameter space in the
case where k = 3.
Proposition 4.6. We keep the same hypotheses and
notation as before. Then:
(i) if h 6⊂ g0, then:

R0,k =
−→0N1
N2

 ∈ H0,k : N1 ∈M0
4−p,k(R), N2 ∈Mp,k(R)


'M0

4−p,k(R)×Mp,k(R). (4.9)

(ii) If h ⊂ g0, then if k = 3, then R0,3 = ∅. Otherwise:

R0,k =
{(−→0

N

)
∈ H0,k : rank(A(t)N dMh,B0) = k + p,

for any t ∈ R} . (4.10)

Proof. Recall that:

M ∈ R(Γ, G,H)⇔
rank(M d g ·Mh,B) = k + p for all g ∈ G. (4.11)

So it appears clear that if k > 4− p, we have:

R(Γ, G,H) = ∅.

We can from now on suppose that k ≤ 4− p. Suppose
in first time that h 6⊂ g0. We note h0 = h ∩ g0 which

is an ideal of g. Let M =
(−→0
N

)
∈ H0,k. If p = 1, then

equation (4.11) is equivalent to rank(M) = k and then
N ∈M0

4−p,k(R). Suppose now that p > 1. So, equation
(4.11) is equivalent to rank(M d Mh0,B) = k + p − 1
which is in turn equivalent to the fact that:

rank(N dMh0,B0) = k + p− 1. (4.12)

According to our choice of the basis B, we get that
Mh0,B0 =

(
(0)
Ip−1

)
∈ M3,p−1(R) where Ip−1 designates

the identity matrix of Mp−1(R). We now write M =−→0N1
N2

 where N1 ∈M0
4−p,k(R) and N2 ∈Mp−1,k(R), we

get that equation (4.12) is equivalent to have rank(N1) =
k. We hence end up with the fact that:

R0,k = R(Γ, G,H) ∩H0,k

=


−→0N1
N2

 : N1 ∈M0
4−p,k(R), N2 ∈Mp−1,k(R)

 .
We now treat the case where h ⊂ g0. So, it is not hard

to see that AdGh = ⋃
t∈R Adexp tXh. Let M =

(−→0
N

)
∈

K0,k. We get therefore that:

M ∈ R(Γ, G,H)
⇔ rank(M d exp tX ·Mh,B) = k + p, forallt ∈ R
⇔ rank(exp tX ·N dMh,B0) = k + p, ∀t ∈ R
⇔ rank(A(t)N dMh,B0) = k + p, ∀t ∈ R.

When k = 3, we have p = 1 and A(t)N d Mh,B0 ∈
M3,4which gives that rank(A(t)N d Mh,B0) < k + p.
This completes the proof of the theorem.

We assume henceforth that k ∈ {1, 2}. We will be
dealing with these subsequent cases separately. The
following upshot exhibits an accurate description of the
parameter space when k = 2.
Proposition 4.7. Let k = 2 and R0,2 as in Proposition
??. Then:
(i) if h 6⊂ g0, then:

i1. If p = 1, then:

R1,2 =



x 0
y1 0
y2 0
y3 y′3

M4,2(R) : y1xy
′
3 6= 0

 ,
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R2,2 =




0 x
0 y1
0 y2
y′3 y3

 ∈M4,2(R) : y1xy
′
3 6= 0


and

R3,2 =



x λx
y1 λy1
y2 λy2
y3 y′3

 : λx(λy3 − y′3)y1 6= 0

 .
i2. If p > 1, then p = 2 and:

Rj,2 = ∅, j = 1, 2, 3.

(ii). If h ⊂ g0, then R1,2 = R2,2 = R3,2 = ∅ if ever
Y3 ∈ h. Otherwise,

Ri,2 = Ki,2, i = 1, 2, 3.

Proof. Let M =


x λx
y1 λy1
y2 λy2
y3 y′3

 ∈ Hom0(Γ, G) such that

λy3 − y′3 ∈ R∗.
We tackle first the case where h 6⊂ g0. In the case

where h = RX, a simple computation shows that AdGh =
RX + [X, g0]. Hence:

rank(M d g ·Mh,B) = 3, for any g ∈ G
⇔ rank(M d t(1, 0, α2, α3)) = 3, ∀α2, α3 ∈ R
⇔ y1 ∈ R∗

Therefore:

M ∈ R1,2 ∪R3,2 ⇔ y1 ∈ R∗.

Similar computations show that for M =


0 x
0 y1
0 y2
y′3 y3

 ∈
K2,2, one gets that M ∈ R2,2 if and only if y1 ∈ R∗.
Suppose now that RX ( h, that is p = 2, we have
that the vector Y3 = t(0, 0, 0, 1) ∈ h and it is a linear
combination of the columns ofM . So rank(MdMh,B) <
p+ 2 and then:

R(Γ, G,H) ∩Kj,2 = Rj,2 = ∅, j = 1, 2, 3.

Suppose finally that h ⊂ g0. If Y3 ∈ h then rank(M d
Mh,B) < 2 + p, which gives us R(Γ, G,H) ∩ Kj,2 =
∅, j = 1, 2, 3. Otherwise,

M ∈ R(Γ, G,H)
⇔ rank(M d exp tX ·Mh,B) = 2 + p, ∀ t ∈ R
⇔ rank(M) = 2
⇔ M ∈ Hom0(Γ, G).

Thus, we have:

Rj,2 = Kj,2, j = 1, 2, 3,

which completes the proof in this case.

Proposition 4.8. Assume that k = 1 and let R0,1 as
in Proposition 4.6. Then

i. if h 6⊂ g0, then:

R1,1 =


 x
y1−→y

 : x ∈ R∗, y1 ∈ R∗,−→y ∈ R2


' (R∗)2 × R2.

ii. If h ⊂ g0, then:

R1,1 = H1,1.

Proof. We have in this case that Γ ' Z. Suppose in a
first time that h 6⊂ g0 and let M ∈ K1,1. So clearly:

rank(M d g ·Mh,B) = p+ 1, for any g ∈ G⇔ (4.13)

rank(g ·M dMh,B) = p+ 1, for any g ∈ G,

which gives when writingM as
(
x−→y

)
∈ K1,1 for x ∈ R∗

and −→y = (y1, y2, y3) ∈ R3, that (4.13) holds if and only
if y1 6= 0.
If now h ⊂ g0, we have:

R1,1 = K1,1 = H1,1.

4.3 Description of the deformation space
T (Γ, G,H).

This section aims to describe the deformation space of
the action of an abelian discrete subgroup Γ ⊂ G on a
threadlike homogeneous space G/H. This description
strongly relies on the comprehensive details about the
parameter space provided in the previous section. Tak-
ing into account the action of G on Hom(l, g) and on
M ′4,k(R) defined in (4.7) and (2.1), the following lemma
is immediate.
Lemma 4.9. The map Ψ defined in (4.1), is
G-equivariant. That is, for any ψ ∈ Hom(l, g) and g ∈
G, we have:

Ψ(g ? ψ) = g ·Ψ(ψ).

Now we can state the following.
Proposition 4.10. Let G be a connected and simply
connected nilpotent four dimensional threadlike Lie group,
H be a closed connected subgroup of G and let Γ be an
abelian discrete subgroup of G. The disjoint compo-
nents Rj,k involved through the description of the pa-
rameter space R(Γ, G,H) are G-invariant. More pre-
cisely, we have the following:

i. If k = 3, then T (Γ, G,H) = (R0,3/G).
ii. If k = 2, then T (Γ, G,H) = ∐3

j=0(Rj,2/G).
iii. If k = 1, then T (Γ, G,H) = (R0,1/G)∐(R1,1/G).
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Proof. Let us first prove that the set R0,k is G-stable.
It is clear that the G-action on R0,k is reduced to the

action of expRX. Let M =
(−→0
N

)
∈ R0,k and t ∈ R ,

then:
exp tX ·M =

( −→0
A(t)N

)
. (4.14)

From theG-invariance of R(Γ, G,H), we get that exp tX·
M ∈ R(Γ, G,H), so we are done in this case.

Suppose now that k = 2. Let M =


x λx
y1 λy1
y2 λy2
y3 y′3

 ∈ R3,2

and let g = exp(tX +a1Y1 +a1Y1 +a3Y3) ∈ G for some
t, a1, a2, a3 ∈ R, then a routine computation shows that:

g ·M =


x λx
y1 λy1
y2(g) λy2(g)
y3(g) y′3(g)


where

y2(g) = y2 + (ty1 − xa1),

y3(g) = y3 + t

2(ty2 − xa2) + (ty1 − xa1)

and

y′3(g) = y′3 + t

2(ty2 − xa2) + (ty1 − xa1),

As λy3(g)−y′3(g) = λy3−y′3, we get that g ·M ∈ R3,2
as was to be shown. We opt for the same arguments to
show that R1,2 and R2,2 are G-invariant as well. Sup-

pose finally that k = 1. Let M =


x
y1
y2
y3

 ∈ R1,1 and

g ∈ G as above. Then:

g ·M =


x
y1

y2 + (ty1 − xa1)
y3 + t

2(ty2 − xa2) + (ty1 − xa1)


which gives rise to the G-invariance of R1,1. Finally,
using Proposition 4.5 which describes the structure of
the parameter space R(Γ, G,H), we can deduce that:

T (Γ, G,H) =
∐

j∈Ik

(Rj,k/G).

This completes the proof of the proposition.
We are now ready to give an explicit description of

the deformation space T (Γ, G,H). Towards this pur-
pose, we can divide the task into three parts as in the
previous section. More precisely, we shall define a cross-
section of Rj,k/G denoted by Tj,k for any j ∈ Ik and
k ∈ {1, 2, 3}. Recall that if 4 − p < k and k ≥ 2,
then we got R(Γ, G,H) = ∅. We suppose then that

k ≤ 4− p. Let m,n ∈ N and denote for any 1 ≤ r ≤ n
and any 1 ≤ s ≤ m by Mn,m(r, s,R) the subset of
Mn,m(R) defined by:

Mn,m(r, s,R) =



0 . . . 0 0 0 . . . 0
... ... ... ... ...
0 . . . 0 0 0 . . . 0
0 . . . 0 xrs ∗ . . . ∗
∗ . . . ∗ ∗ ∗ . . . ∗
... ... ... ... ...
∗ . . . ∗ ∗ ∗ . . . ∗


∈Mn,m(R) : xrs ∈ R∗


,

and

M ′n,m(r, s,R) = {M ∈Mn,m(r, s,R) : x(r+1)s = 0}.

We now consider the sets:

R0,k(r, s) = R0,k ∩M4,k(r, s,R).

For any k ∈ {1, 2, 3}, let Jk designate the set of all
(r, s) ∈ {1 ≤ r ≤ 4}×{1 ≤ s ≤ k} for whichR0,k(r, s) 6=
∅, then (1, s) 6∈ Jk and we have:

R(Γ, G,H) =
∐

(r,s)∈Jk

R0,k(r, s)

whenever k = 3. Moreover, it is not hard to see that
R0,k(r, s) is G-invariant. That is:

R0,k/G =
∐

(r,s)∈Jk

(R0,k(r, s)/G).

Let for any (r, s) ∈ Jk :

T0,k(r, s) = R0,k(r, s)∩M ′4,k(r, s,R) = R0,k∩M ′4,k(r, s,R),

so, with the above in mind, we have the following:
Proposition 4.11. We keep all our notation as above.
Then we have:

i. T0,k(r, s) is homeomorphic to R0,k(r, s)/G for any
(r, s) ∈ Jk.

ii. T0,k =
∐

(r,s)∈Jk

T0,k(r, s).

If in particular k = 3, then T (Γ, G,H) ' T0,3.

Proof. Let (r, s) ∈ Jk. We show that T0,k(r, s) is a cross-
section of all adjoint orbits of R0,k(r, s). It is clear that
the G-action on R0,k(r, s) is reduced to the action of

expRX. More precisely, let M =
(−→0
N

)
∈ R0,k(r, s),

then:

G ·M = [M ] =
{( −→0

A(t)N

)
: t ∈ R

}
. (4.15)
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Noting N = {(ai,j), 1 ≤ i ≤ 3, 1 ≤ j ≤ k}, we get
ar−1,s 6= 0. Let:

tM =
{
− ar,s

ar−1,s
if r < 4,

0 if r = 4.

We can then show that:{( −→0
A(tM )N

)}
= G ·M ∩ T0,k(r, s). (4.16)

Remark that if r = 4 then k = 1 and G · M = M ,
so (4.16) holds. Suppose now that r ≤ 3. It is then

clear that
( −→0
A(tM )N

)
∈ G · M ∩ T0,k(r, s) using the

G-invariance of the layer R0,k(r, s). Conversely, if( −→0
A(t)N

)
∈ T0,k(r, s) then, by an easy computation, we

can see that ar,s + tar−1,s = 0, which gives that t = tM .
The next step consists in showing that the map:

(Φ0,k)(r,s) : R0,k(r, s)/G → T0,k(r, s)

[M ] 7→
( −→0
A(tM )N

)
(4.17)

is bijective. First of all, it is clear that (Φ0,k)(r,s) is
well defined. In fact, let M1, M2 ∈ R0,k(r, s) such
that [M1] = [M2]. Then (Φ0,k)(r,s)([M2]) = G ·M2 ∩
T0,k(r, s) = G ·M1 ∩ T0,k(r, s) = (Φ0,k)(r,s)([M1]). For

M1 =
(−→0
N1

)
and M2 =

(−→0
N2

)
∈ R0,k(r, s) such that

(Φ0,k)(r,s)([M1]) = (Φ0,k)(r,s)([M2]), we have:( −→0
A(tM1)N1

)
=
( −→0
A(tM2)N2

)
∈ G ·M1 ∩G ·M2.

It follows therefore that [M1] = [M2], which leads to
the injectivity of (Φ0,k)(r,s). Now, to see that (Φ0,k)(r,s)
is surjective, it is sufficient to verify that for all M ∈
T0,k(r, s), we have (Φ0,k)(r,s)([M ]) = M as G · M ∩
T0,k(r, s) = {M}. To achieve the proof, we prove that
(Φ0,k)(r,s) is bi-continuous. Let (π0,k)(r,s) : R0,k(r, s)→
R0,k(r, s)/G be the canonical surjection. Thus, we can
easily see the continuity of (Φ̃0,k)(r,s) = (Φ0,k)(r,s) ◦
(π0,k)(r,s) which is equivalent to the continuity of
(Φ0,k)(r,s). Finally, it is clear that

((Φ0,k)(r,s))−1 = ((π0,k)(r,s))|T0,k(r,s),

so the bi-continuity follows.
Proposition 4.12. Assume that k = 2, then T0,2 is
described in Proposition 4.11 and Rj,2/G is homeomor-
phic to Tj,2 for j = 1, 2, 3 given as follows:
(i). if h 6⊂ g0, then we have the following subcases:

i1. if p = 2, then Tj,2 = ∅, j = 1, 2, 3.

i2. if p = 1, then:

T1,2 =



x 0
y 0
0 0
0 β

 ∈M4,2(R) : x, β, y ∈ R∗

 ,
(4.18)

T2,2 =




0 x
0 y
0 0
β 0

 ∈M4,2(R) : x, β ∈ R∗, y ∈ R


(4.19)

and

T3,2 =



x λx
y λy
0 0
0 β

 ∈M4,2(R) :

x ∈ R∗, y ∈ R, β ∈ R∗, λ ∈ R∗} . (4.20)

(ii) If h ⊂ g0, then:

ii1. if Y3 ∈ h, then Tj,2 = ∅, j = 1, 2, 3.
ii2. If Y3 6∈ h, then Tj,2, j = 1, 2, 3 are given by:

T1,2 =



x 0
y 0
0 0
0 β

 ∈M4,2(R) : x, β ∈ R∗, y ∈ R

 ,
(4.21)

T2,2 =




0 x
0 y
0 0
β 0

 ∈M4,2(R) : x ∈ R∗, β ∈ R∗


(4.22)

and

T3,2 =

x λx
y λy
0 0
0 β

 ∈M4,2(R) : (x, β, λ) ∈ (R∗)3


(4.23)

Proof. It is clear that whenever Rj,2 = ∅, j = 1, 2, 3 we
have Tj,2 = ∅, j = 1, 2, 3 and therefore T (Γ, G,H) '
T0,2. So, we only have to treat the case when h 6⊂ g0 for
p = 1 and the case when Y3 6∈ h and h ⊂ g0. Let in a

first time M =


x λx
y1 λy1
y2 λ−→y 2
y3 λy3 + β

 ∈ R3,2. We get that:

G ·M =



x λx
y1 λy1
a λa
b λb+ β

 : b ∈ R , a ∈ R

 . (4.24)
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We define then a subset T3,2 of R3,2 as in (4.20), we get:

G ·M ∩ T3,2 =



x λx
y1 λy1
0 0
0 β


 .

The case where M ∈ R1,2 is settled with the same way
as above by taking λ = 0. We have:

G ·M ∩ T1,2 =



x 0
y1 0
0 0
0 β


 .

Finally, similar computations show:

G ·M ∩ T2,2 =




0 x
0 y1
0 0
β 0


 .

We now see earlier that for j = 1, 2, 3, the set Tj,2 is
homeomorphic to Rj,2/G. This achieves the proof of
the proposition.
Proposition 4.13. Assume that k = 1. The layer
T0,1 being described in Proposition 4.11), we have that
R1,1/G is homeomorphic to T1,1, where:

i. if h 6⊂ g0, then:

T1,1 =



x
y1
0
0

 ∈M4,1(R) : x ∈ R∗, y1 ∈ R∗

 .
ii. If h ⊂ g0, then:

T1,1 =



x
y1
0
0

 ∈M4,1(R) : x ∈ R∗, y1 ∈ R

 .

Proof. For M =


x
y1
y2
y3

 ∈ R1,1, we have

G ·M =



x
y1
a
b

 : (a, b) ∈ R2

 .
Hence, for T1,1 as above, we get:

G ·M ∩ T1,1 =



x
y1
0
0


 .

Moreover it is clear that the sets R1,1/G and T1,1 are
homeomorphic, which completes the proof of the propo-
sition.

Summarizing section 4 and 5, we have then given a
proof to the following:
Theorem 4.14. Let G be a connected and simply con-
nected threadlike nilpotent Lie group, H a closed con-
nected subgroup of G and Γ ' Zk a discrete subgroup of
G. Then the deformation space T (Γ, G,H) is described
as follows:

T (Γ, G,H) =∐
(r,s)∈Jk

T r,s
0,k (Γ, G,H)

∐
j∈Ik\{0}

Tj,k(Γ, G,H),

where T r,s
0,k (Γ, G,H) is homeomorphic to T0,k(r, s) for

any (r, s) ∈ Jk and Tj,k(Γ, G,H) to Tj,k for any j ∈
Ik \ {0}.

5 The rigidity problem

This section is devoted to the study of the topologi-
cal property of the parameter space namely the local
rigidity. We keep the same notation agreed on, in the
previous sections. Our main result in this section is the
following:
Theorem 5.1. Let G be the four-dimensional thread-
like Lie group, H be a connected subgroup of G, and Γ be
a non-trivial discontinuous subgroup for G/H. Then lo-
cal rigidity globally fails to hold on the parameter space.

Proof. We have to show that the G-orbit of any M ∈
R(Γ, G,H) is not open in the parameter space. As-

sume first that k = 3 and let M =
( −→0
N

)
∈ R0,3.

Writing N =

y11 y12 y13
y21 y22 y23
y31 y32 y33

 ∈M0
3,3(R), the sequence

(Ms)s∈N∗ given by

Ms =


0 0 0
y11 y12 y13

y21 + 1
sy11 y22 + 1

sy12 y23 + 1
sy13

y31 y32 y33


belongs toR\G·M and converges toM . Now for k = 2
, thus either we are in the context where M belongs to
R0,2 and then the last arguments apply or

M =


λ1x λ2x
λ1y1 λ2y1
λ1y2 λ2y2
λ1y3 λ2y3 + β

 ∈ Rj,2.

As

G ·M =



λ1x λ2x
λ1y1 λ2y1
λ1a λ2a
b λb+ β

 : b ∈ R , a ∈ R

 .



5 The rigidity problem 53

Then it suffices to consider the sequence (Ms)s∈N∗ given
by

Ms =


λ1x λ2x
λ1y1s λ2y1s

λ1y2 λ2y2
λ1y3 λ2y3 + β

 ∈ R \G ·M,

where
y1s =

{
y1 + 1

s if y1 > 0,
y1 − 1

s otherwise.

Finally for k = 1, the same argument as in case k = 2
applies.
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