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The Space of Closed Subgroups of R2

and Seifert Invariants

Benoît Kloeckner

Abstract

In this note we give a version of the proof of the Hubbard-Pourezza
Theorem, introduced below, using Seifert fibration. Our main goal is to
compute explicitly and directly Seifert invariants in this nice example.
The fact that it is fairly hard to find such a direct computation in the
literature is our main motivation.
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1 Introduction

Let G be a topological group whose neutral element is
denoted by 0 (although G need not be abelian). Its
Chabauty space C (G) is the set of closed subgroups of
G endowed with the following topology: the neighbor-
hoods of a point Γ ∈ C (G) are the sets

NK
U (Γ) = {Γ′ ∈ G | Γ′ ∩K ⊂ Γ · U and Γ ∩K ⊂ Γ′ · U}

whereK runs over the compact subsets of G and U runs
over the neighborhoods of 0. In words, Γ′ is very close
to Γ if, on a large compact set, every of its elements
is in a uniformly small neighborhood of an element of
Γ, and conversely. The preprint [13] contains a more
detailed account of this topology.

The simplest example of a Chabauty space is that
of the line: C (R) contains the trivial subgroup {0}, the
discrete groups αZ and the total group R. Two discrete
groups αZ and βZ are close one to another when α and
β are close, a neighborhood of {0} consists in the set
of αZ with large α (and we define ∞Z = {0}) and a
neighborhood of R consists in the set of αZ with small
α (and we define 0Z = R). Putting all this together,
we see that C (R) is homeomorphic to a closed interval.

αZ {0} =∞ZR = 0Z

Fig. 1: Chabauty space of R.

Only for a few groups G do we have a precise de-
scription of C (G). Works of Bridson, de la Harpe and
Kleptsyn [3] and Haettel [11] have added to the list the
three-dimensional Heisenberg group and R× Z respec-
tively, but the topology of C (Rn) is unknown for n > 2
(although we proved in [17] that it is simply connected).
Even C (R2) is not easy to describe; it was tackled by
Hubbard and Pourezza [15] who proved the following.
Theorem 1.1 (Hubbard-Pourezza). Let C be the Cha-
bauty space of R2 and L be the subset of lattices. The
topological pair (C ,C r L ) is homeomorphic to the
suspension of (S3, K) where K is a trefoil knot in the
3-sphere. In particular, C is a 4-sphere.

Let us recall some definitions. A topological pair is a
pair (X, Y ) of topological spaces where Y is a subset of
X (endowed with the induced topology). Two topologi-
cal pairs (X, Y ) and (X ′, Y ′) are homeomorphic if there
is a homeomorphism Φ : X → X ′ that maps Y onto Y ′.
The (open) cone over X is the quotient cX of X× [0, 1)
by the relation (x0, 0) ∼ (x1, 0), while the suspension
of X is the quotient sX of X × [0, 1] by the relations
(x0, 0) ∼ (x1, 0) and (x0, 1) ∼ (x1, 1) for all x0, x1 ∈ X.
If Y is a subset of X, then sY embeds naturally in
sX and the resulting topological pair (sX, sY ) is called
the suspension of (X, Y ). The Hubbard-Pourezza the-
orem shows in particular that the set of non-lattices is
a 2-sphere that is non-tamely embedded in C ' S4.

The goal of this note is to give a proof of this the-
orem using Seifert fibration. This proof is not really
original, it is even alluded to in the paper of Hubbard
and Pourezza. The topology of the subspace of lattices
is a very classical topic, see for example [23], [13] which
also contains a detailed version of the original proof
of Hubbard-Pourezza’s result, or [22] which also links
to Seifert fibrations. However we could not find the
explicit computation of Seifert invariants, as presented
here, in the literature.

54



2 The Chabauty space of R2 is a 4-sphere 55

2 The Chabauty space of R2 is a 4-sphere

2.1 Definitions and notations

In this section, we denote by C the Chabauty space of
R2. A closed subgroup of R2 is of one of the following
types:

• (0, 0): the trivial subgroup 0 ;
• (0, 1): isomorphic to Z ;

• (0, 2): isomorphic to Z2 (these are the lattices) ;
• (1, 0): isomorphic to R ;
• (1, 1): isomorphic to R× Z ;

• (2, 0): the total group R2.

Each type is an orbit of the action of GL(2;R) on C .
The set of lattices is L =: C (0,2), its complement is
denoted by H .

A closed subgroup Γ of R2 has a determinant, or
covolume, covol(Γ). If Γ is a lattice, it is its usual de-
terminant, that is the determinant of any direct base of
Γ. It is 0 if Γ is isomorphic to R×Z or R2, and ∞ if Γ
is isomorphic to Z or 0. By convention, covol(Γ) takes
simultaneously all values in [0,∞] if Γ is isomorphic to
R. So defined, the levels of covol are closed in C . Out-
side the set R := C (1,0) of subgroups isomorphic to R,
covol is a continuous function.

Let C>1, respectively C61, be the subsets of C de-
fined by covol > 1 and covol 6 1. These sets both
contain R. Let H>1 = H ∩ C>1 be the set of sub-
groups isomorphic to R, Z or 0, and H61 = H ∩ C61
be the set of subgroups isomorphic to R, R× Z or R2.

Let L1 be the set of covolume 1 lattices, and C1 its
closure. Then C1 is the union of L1 and of the set R.

We use the usual identification R2 ' C, so that any
subgroup isomorphic to R can be written in the form
eiθR.

We also define the norm (or systol)

N(Γ) = N1(Γ) = inf {|x| | x ∈ Γ \ {0}}

It is a continuous functions taking its values in [0,∞].
Let C 1 be the set of norm 1 subgroups of R2. A point
of C 1 is either isomorphic to Z, or a lattice. We denote
by Z 1 the set C 1 \L .

Figure 2 sums up this notations.
The proof of Theorem 1.1 is in two parts. We first

prove that the topological pair (C ,H ) is the suspen-
sion of (C 1,Z 1), then that the latter is homeomorphic
to (S3, K) where K is a trefoil knot.

0

C>1

H61

R = C (1,0)

C1

Z 1

H>1

C61

R2

C 1

Fig. 2: Sum up of notations

2.2 The Chabauty space of R2 is a suspension

In this first part of the proof, which is not our main
motivation, the proof will be given only few details.
Lemma 2.1. The topological pair (C>1,H>1) is home-
omorphic to the cone over (C1,R).

Proof. We consider the map

Φ : C1 × [0,∞] → C>1

(Γ1, t) 7→
{ (

t
N(Γ1) + 1

)
Γ1 if Γ1 ∈ L1

teiθZ if Γ1 = eiθR

where by convention 0eiθZ = eiθR and ∞Γ = 0 if Γ is
discrete.

This map is continuous, maps C1×{0} onto C1 and
R × [0,∞] onto H>1. It induces a continuous bijec-
tion Φ̃ from the quotient of C1 × [0,∞] by the relation
(Γ1,∞) ∼ (Γ′1,∞) onto C>1. Since the latter is com-
pact, Φ̃ is a homeomorphism between the cone over
(C1,R) and (C>1,H>1).
Lemma 2.2. The topological pair (C1,R) is homeo-
morphic to (C 1,Z 1).

Proof. The map Ψ : C 1 → C1 that assigns to Γ the
only tΓ of unit covolume (t = 0 if Γ is isomorphic to Z,
t = covol(Γ)−1/2 otherwise) is continuous and a bijec-
tion. By compacity of C1, closed in C , it is a homeo-
morphism.
Proposition 2.3. The topological pair (C ,H ) is home-
omorphic to the suspension of (C 1,Z 1).

Proof. We can either reproduce the previous arguments
to prove that (C61,H61) is also a cone over (C 1,Z 1) or
use the duality ∗ which maps C>1 on C61 and preserves
L .
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2.3 Subgroups of unit norm

To get Theorem 1.1, we have left to prove the following.
Proposition 2.4. The topological pair (C 1,Z 1) is home-
omorphic to (S3, K).

The proof runs over the rest of the Section. We shall
describe C 1 as a Seifert fibration (see for example [1]
for an introduction to Seifert fibrations). Let Γ be a
point of C 1. The isometry group SO(2) acts on C 1,
and up to a rotation we can assume that 1 ∈ Γ ⊂ C.
Then Γ is determined by the choice of a second vector
in the fundamental domain
D = {z ∈ C; |z| > 1 and − 1/2 > Re(z) > 1/2} ∪ {∞}
where z = ∞ means that Γ is isomorphic to Z (figure
3). Identifying the points of D that represent the same
Γ leads to the quotient of D by the relation z ∼ z − 1
if Re(z) = 1/2 and z ∼ −z̄ if |z| = 1, turning it into
a 2-sphere denoted by B, that will be the base of the
Seifert fibration.
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Fig. 3: Fundamental domain: the vertical lines and the circle
arcs are glued according to the arrows, � and 4 are
the singular points.

The kernel of the action of SO(2) is reduced to {±1},
and the quotient gives an action of the circle that is
almost free: the only points of C 1 that have nontrivial
stabilizers are the triangular lattices (stabilizer of order
3) and the square lattices (stabilizer of order 2). It
follows that C 1 is a Seifert fibration with base B ' S2

and two singular fibers of order 2 and 3, and where Z 1

is a regular fiber. The unnormalized Seifert invariants
of C 1 are (0|(2, β1); (3, β2)) and we have left to find
the rational Euler number β1/2 + β2/3 to determine
(C 1,Z 1).

We first choose a cross-section of the regular part
of the Seifert fibration. It would be natural to lift
each point u in the fundamental domain to the sub-
group generated by u and 1, but this would not define
a continuous cross-section. The gluing of the unit cir-
cle indeed identifies, for all θ ∈ [0, π/6], the subgroups
1Z+ ei(π/2−θ)Z and 1Z+ ei(π/2+θ)Z by a rotation of an-
gle π/2+θ. We shall therefore modify this cross-section
in a neighborhood of one of the circular arcs of D.

Let S1 = R/πZ be the quotient SO(2)/{±1}, D′ be
the fundamental domain D minus the singular points

(i, eiπ/3 and e2iπ/3) and B′ be the base B minus the
two singular points (corresponding to i and eiπ/3 ∼
e2iπ/3). We choose a continuous map f : D′ → [0, π/2]
that is constant with value 0 except in a neighborhood
of the arc

{
ei(π/2+θ)

∣∣∣ θ ∈]0, π/6[
}
, where it satisfies

f(ei(π/2+θ)) = π/2 − θ. We then define a cross-section
σ : B′ → C 1 by σ(u) = eif(u)(1Z+uZ). It is continuous
since

σ(ei(π/2+θ)) = ei(π/2−θ)(1Z + ei(π/2+θ)Z)
= ei(π/2−θ)Z + 1Z
= σ(ei(π/2−θ)).

Let b be the homotopy class in C 1 of a regular fiber,
d1 and d2 be the homotopy classes defined by σ on the
boundary of C 1

• = C 1 \ {F1, F2} where F1 and F2 are
invariant neighborhoods of the singular fibers of order
2 and 3, respectively.
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f 6= 0
d1 d2

Fig. 4: The cross-section σ defines homotopy classes in the
boundary of C 1

• .

In ∂F1 and ∂F2 respectively, we get that 2d1 + b
and 3d2 − b are homotopic to meridians (see figure 5
where F1 and F2 are pictured with coordinates (u, ϕ) ∈
B × R/πZ 7→ eiϕ(1Z + uZ), with the suitable identifi-
cations). It follows that C 1 has unnormalized Seifert
invariants (0|(2, 1), (3,−1)) and rational Euler number
equal to 1/2− 1/3 = 1/6.

We shall know exhibit a very classical Seifert fibra-
tion on S3 whose regular fibers are trefoil knots, that
has base S2, two singular fibers of order 2 and 3 and ra-
tional Euler number 1/6. Since a Seifert fibration is de-
termined by these data, we will conclude that (C 1,Z 1)

b

d1

π

π
2

0

singular fiber (twice)

b

d2

π
3

2π
3

π

0

singular fiber (thrice)

Fig. 5: Neighborhood F1 and F2 of the singular fibers
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is homeomorphic to (S3, K).
Consider the following action of the circle R/Z on

S3, identified to the unit sphere of C2:

s · (z1, z2) = (e2πm1isz1, e
2πm2isz2)

with m1 = 2 and m2 = 3. The stabilizer of almost
every point is trivial, the exceptions being the polar
orbits (z1, 0) and (0, z2). If m1 and m2 where equal
to 1, we would get the Hopf fibration where the non-
polar orbits are Villarceau circles of the tori |z1/z2| = c,
where c runs over [0,∞]. Taking m1 = 2 and m2 = 3,
we replaced the Villarceau circle by toric knots, here
trefoil knots (figure 6).

Fig. 6: The torus knot (2, 3) is a trefoil knot.

We see that the regular part of the base is foliated by
the circles obtained by quotienting the tori |z1/z2| = c
by the action of S1, and is therefore an annulus. One
can see this annulus as the S2 base of the Hopf fibration
minus two points for the singular fibers.

Let us compute the Seifert invariants of this action,
which are surprisingly difficult to find in the litterature.
We use a representation found in [18].

Let T 2 = R/Z×R/Z be the standard 2-torus equiped
with the foliation by straight lines of slope 3/2. If we
denote by x the homotopy class of

R/Z → T 2

t 7→ (t, 0)

and by y the homotopy class of

R/Z → T 2

t 7→ (0, t)

the homotopy class of any leave of this foliation is ` =
2x+ 3y.

In the space T 2×[0, 1] define Tt := T2×{t}, endowed
with the above foliation for t ∈ (0, 1). Let Π : T 2 ×
[0, 1] → S3 be the mapping defined as follows. First,
Π contracts T0 to the singular fiber {(0, z2) | |z2| = 1}
and T1 to the singular fiber {(z1, 0) | |z1| = 1} with
Π(a, b, 0) = (0, e2iπb) and Π(a, b, 1) = (e2iπa, 0). Sec-
ond, it maps Tt to a torus defined by |z1/z2| = c(t) with
c an increasing continuous function such that c(t)→ 0

(resp. +∞) when t → 0 (resp. 1), and maps the fo-
liation of Tt to the Seifert foliation in S3. Think of
T 2 × [0, 1] as a blow-up of S3 along the singular fibers.

The point is that in this presentation, one can give
explicitely a cross-section of the Seifert fibration over
the regular part: just consider the set

{(s, 2s, t) | s ∈ R/Z, t ∈ (0, 1)} ⊂ T 2 × (0, 1)

This set intersects each of the Tt along a straight line
homotopic to x+ 2y, which intersects each 2x+ 3y line
once, thus it does define a section.

In the boundary of a neighborhood of T0, the section
defines a curve homotopic to d0 = −x − 2y (the sign
depends upon the choice of orientation). Since ` =
2x+3y is the homotopy class of a regular fiber, we have
3d0 + 2` = x, a meridian. Similarly, in the boundary
of a neighborhood of T1, the section defines a curve
homotopic to d1 = x+2y and 2d1−` = y is a meridian.

Therefore, this Seifert fibration has unnormalized
invariants (0|(3, 2), (2,−1)) and rational Euler number
2/3− 1/2 = 1/6 as needed.
Remark 2.5. As we said in the introduction, it is well
known that the homogeneous space SL(2;R)/ SL(2;Z)
is homeomorphic to the complement of a trefoil knot
in S3. Here the difficulty is to prove that when gluing
the fiber Z 1 we do get a sphere and not some other
3-manifold obtained by surgery along a trefoil knot.
Remark 2.6. Christopher Tuffley studied [28] the spaces
expk(S1) of all non-empty subset of the circle of cardi-
nality at most k. In particular, he proved using Seifert
fibrations that exp3(S1) is a 3-sphere, its subset exp1(S1)
being a trefoil knot.

The similarity with Proposition 2.4 is not fortuitous:
Jacob Mostovoy proved [21] by a simple geometric ar-
gument that (exp3(S1), exp1(S1)) is homeomorphic to
(C 1,Z 1). Combining these two results one gets an-
other Seifert fibration proof of Proposition 2.4. Note
that even the Seifert part is somewhat different from
ours, since it is first proved that exp3(S1) is simply
connected, which reduces drastically its possible Euler
numbers.
Remark 2.7. A nice feature of the study of exp3(S1) is
that its subset exp2(S1) is easily seen to be a Möbius
strip, with boundary exp1(S1): we recover the fact that
a trefoil knot bounds a Möbius strip. This can be
seen in (C 1,Z 1) as well: over the vertical line L =
{iy | y ∈ [1,+∞]} of the base B, the Seifert fibration
is a closed Möbius strip whith boundary Z 1, obtained
by identifying antipodal points of the (y = 1) boundary
component of the strip L× S1.
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