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Abstract

We analyze the existence and several trajectorial and distributional properties of the solution to the fractional heat equation
driven by a multiparameter Hermite process. We give a necessary and sufficient condition for the existence of the mild
solution and we study the scaling property and the regularity of the trajectories of this solution. We also obtain a
decomposition of the solution as the sum of a self-similar process with stationary increments and of another process with
nice sample paths. This decomposition is used to get the limit behavior of the temporal p-variation of the solution. Via
the p-variation method, we define a consistent estimator for the drift parameter of this equation.
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1 Introduction

The Hermite processes are self-similar stochastic processes with stationary increments and with long
memory. The class of Hermite processes includes the fractional Brownian motion (which is the only
Gaussian Hermite process) and the Rosenblatt process. In the last two decades, this class of stochastic
processes has been extensively studied, due to their potential to model various phenomena and also
due to their interesting theoretical properties. The reader may consult the recent monographs [16]
or [22] for a complete presentation of the Hermite processes.

The development of stochastic analysis of Hermite processes naturally led to the study of stochastic
(partial) differential equations driven by these stochastic processes. Some examples of stochastic
(partial) differential equations with Hermite noise can be found in [1, 2, 3, 4, 5, 7, 14, 19, 21].

The purpose of this work is to study the fractional stochastic heat equation driven by the multi-
parameter Hermite process. This pursues the very dynamic research direction on stochastic partial
differential equations (SPDEs in the sequel) with more and more general random noises, initiated by
the seminal paper [24]. The term “fractional” is related to the presence of the fractional Laplacian
operator in the heat equation, which replaces the usual Laplacian. The case of the stochastic heat
equation with standard Laplacian has been considered in e.g. [19, 20, 5]. We give a necessary and
sufficient condition for the existence of the solution, and we study several other properties of the
solution, such as the self-similarity, the regularity of the sample paths. We also state and prove a
decomposition of the solution as the sum of a self-similar (non-Gaussian) process with stationary
increments and of another process with very regular trajectories. This decomposition will be used
to obtain the behaviour of the temporal p-variations of the solution to the fractional stochastic heat
equation with Hermite noise and then to estimate the drift parameter of this equation.
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Although several properties of the solution can be obtained by following the lines of the proofs
in the case of the standard Laplacian (as in e.g. [19]), the statistical inference for the stochastic
heat equation (or even in general for stochastic partial equations) with Hermite noise has never been
considered. We point out that several results are available for stochastic differential equations driven
by Hermite processes, especially for the Hermite Ornstein-Uhlenbeck process, see e.g. [1] or [14].
The method to estimate the drift parameter, based on some transform of the solution that allows
to move this parameter in front of the random noise and then to employ the p-variation techniques,
constitutes a first step for the statistical inference in Hermite-driven models and it also works for the
case of the standard Laplacian operator. Our techniques are based on the properties of the random
processes in a Wiener chaos of fixed order and on some estimates involving the Green kernel of the
fractional Laplacian operator.

This work is organized as follows: in Section 2, we present the basics on multiparameter Hermite
process and we recall the construction of the Wiener integral with respect to them. In Section
3, we consider the solution to the fractional stochastic heat equation with Hermite noise and we
analyze several properties: its existence, its scaling property, the regularity of its trajectories and
the p-variation. We apply these results to estimate the drift parameter in Section 4. Section 5 is an
Appendix which contains the basic properties of multiple stochastic integrals.

2 Preliminaries

Let us start by introducing the definition and the basic properties of the multiparameter Hermite
processes and by recalling the construction of the Wiener integral with respect to the Hermite sheet.
Since we are dealing with multi-indices stochastic process, we will introduce some notation, needed
in order to facilitate the reading. For d ∈ N\ {0}, if a = (a1, a2, . . . , ad), b = (b1, b2, .., bd) and
α = (α1, .., αd) are vectors in Rd, we set

ab =
d∏
i=1

aibi, |a − b|α =
d∏
i=1
|ai − bi|αi ,

a/b = (a1/b1, a2/b2, . . . , ad/bd), [a,b] =
d∏
i=1

[ai, bi], (a,b) =
d∏
i=1

(ai, bi),

N∑
i=0

ai =
N1∑
i1=0

N2∑
i2=0

. . .
Nd∑
id=0

ai1,i2,...,id , ab =
d∏
i=1

abii , if N = (N1, .., Nd) (2.1)

We also set a < b if a1 < b1, a2 < b2, . . . , ad < bd (analogously for the other inequalities). We
write a − n to indicate the product ∏d

i=1(ai − n). By β we denote the Beta function β(p, q) =∫ 1

0
zp−1(1− z)q−1dz, p, q > 0 and we use the notation

β(a,b) =
d∏
i=1

β (ai, bi)

if a = (a1, .., ad) and b = (b1, .., bd) belong to (0,∞)d.

2.1 The Multiparameter Hermite Process

Let H = (H1, . . . , Hd) ∈
(

1
2 , 1

)d
and let d, q ≥ 1 be integer numbers. The d-parameter Hermite

process (or the Hermite sheet)
(
Z

(q)
H,d(t), t ∈ Rd+

)
of order q ≥ 1 and with Hurst parameter H is

defined, for every t ∈ R+, as

Z
(q)
H,d(t) = c(H, q)

∫
Rdq

[∫
[0,t]

(s− y1)
−( 1

2 + 1−H
q )

+ . . . (s− yq)
−( 1

2 + 1−H
q )

+ ds

]
dW (y1) . . . dW (yq) (2.2)
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where x+ = max(x, 0) and (W (y), y ∈ Rd) is a d-parameter Brownian sheet, i.e. it is a centered
Gaussian process with covariance

EW (y)W (z) =
d∏
j=1

(1
2 (|yj |+ |zj | − |yj − zj |)

)

if y = (y1, ..., yd), z = (z1, .., zd) ∈ Rd. The stochastic integral dW (y1) . . . dW (yq) should be under-
stood as a multiple stochastic integral of order q with respect to the Gaussian process (W (y), y ∈
Rd), as described in the Appendix (Section 5). The notation (s − y1)

−( 1
2 + 1−H

q )
+ is understood as∏d

j=1(sj − y1,j)
−
(

1
2−

1−Hj
q

)
if s = (s1, ..., sd) and y1 = (y1,1, y1,2, ..., y1,d). The constant c(H, q) is a

strictly positive constant chosen such that E(Z(q)
H,d(t))2 = t2H for every t ∈ Rd+. Using the notation

in the Appendix, we can write, for every t ∈ Rd+,

Z
(q)
H,d(t) = Iq(Lt)

where, for y1, . . . , yq ∈ Rd, the kernel Lt is given by

Lt(y1, . . . , yq) = c(H, q)
[∫

[0,t]
(s− y1)

−( 1
2 + 1−H

q )
+ . . . (s− yq)

−( 1
2 + 1−H

q )
+ ds

]
. (2.3)

It can be checked that Lt belongs to L2(Rdq) for every t ≥ 0 and this justifies the fact that the multiple
stochastic integral in (2.2) is well-defined. We can also write, taking into account the notation (2.1),

Z
(q)
H,d(t) = C(H, q)

∫
Rdq

dW (y1,1, ...., y1,d) . . . dW (yq,1, ...., yq,d)
[∫ t1

0
. . .
∫ td

0
dsd . . . ds1

d∏
j=1

(s1 − y1,j)
−
(

1
2 +

1−Hj
2

)
+ . . .

d∏
j=1

(sd − yd,j)
−
(

1
2 +

1−Hj
2

)
+

 .
if t = (t1, ..., td), s = (s1, ..., sd), yi = (yi,1, ..., yi,d) for i = 1, ..., q.

The Hermite sheet is an H-self-similar stochastic process and it has stationary increments and its
paths are Hölder continuous of order δ < H (see [16] or [22] for the description of these concepts in
the multidimensional context). Its covariance is the same for every q ≥ 1 and it coincides with the
covariance of the d-parameter fractional Brownian motion, i.e.

EZ(q)
H,d(t)Z

(q)
H,d(s) =

d∏
i=1

(1
2
(
t2Hii + s2Hi

i − |ti − si|2Hi
))

=: RH(t, s), ti, si ≥ 0. (2.4)

if t = (t1, ..., td) and s = (s1, ..., sd).

2.2 The Wiener-Hermite Integral

The definition of the solution to the fractional stochastic heat equation with Hermite noise involves
a Wiener integral with respect to the Hermite sheet. We recall below the definition of the Wiener
integral with respect to the multiparameter Hermite process. This integral will be called in the
sequel the Wiener-Hermite integral. The first step is to introduce the space of suitable integrands.
Let

∣∣∣H(Rd)
∣∣∣ be the set of measurable functions f : Rd → R such that∫

Rd

∫
Rd
dudv|f(u)||f(v)||u− v|2H−2 <∞.

If f ∈
∣∣∣H(Rd)

∣∣∣, the Wiener integral of f with respect to Z(q)
H,d is defined as∫

Rd
f(s)dZ(q)

H,d(s) = Iq(Jf) (2.5)
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where Iq denotes the multiple integral of order q with respect to the d-parameter standard Brownian
field

(
B(y),y ∈ Rd

)
and the transfer operator Jf ∈ L2(Rd.q) is given by, for every y1, . . . , yq ∈ Rd,

Jf(y1, ..., yq) = c(H, q)
∫
Rd
duf(u)(u− y1)

−( 1
2 + 1−H

q )
+ . . . (u− yq)

−( 1
2 + 1−H

q )
+ . (2.6)

The Wiener-Hermite integral satisfies the following isometry

E
(∫

Rd
f(s)dZ(q)

H,d(s)
∫
Rd
g(s)dZ(q)

H,d(s)
)

= 〈f, g〉H(Rd) (2.7)

for every f, g ∈
∣∣∣H(Rd)

∣∣∣, where we used the notation

〈f, g〉H(Rd) = αH

∫
Rd

∫
Rd
f(u)g(v)|u− v|2H−2dudv

with αH = H(2H− 1) = ∏d
j=1 (Hj(2Hj − 1)) .

3 Fractional Heat Equation with Hermite Noise

Consider the stochastic partial differential equation

∂

∂t
u(t, x) = −(−∆)

α
2 u(t, x) + Ż

(q)
(H0,H),d+1(t, x), t ≥ 0, x ∈ Rd. (3.1)

with vanishing initial condition u(0, x) = 0 for every x ∈ Rd. In (3.1), −(−∆)α2 denotes the fractional
Laplacian with exponent α

2 , α ∈ (0, 2] and Ż
(q)
(H0,H),d+1 denotes the formal derivative of the d + 1-

parameter Hermite sheet of order q ≥ 1 with Hurst parameter (H0,H) ∈
(

1
2 , 1

)d+1
where H =

(H1, . . . , Hd) ∈
(

1
2 , 1

)d
.

The mild solution can be expressed as

u(t, x) =
∫ t

0

∫
Rd
Gα(t− s, x− y)Z(q)

(H0,H),d+1(ds, dy) (3.2)

where Gα is the Green kernel associated to the fractional Laplacian, i.e. it satisfies

∂u

∂t
(t, x) = −(−∆)

α
2 u(t, x)

and Z(q)
(H0,H),d+1(ds, dy) means the Wiener integral with respect to the Hermite sheet, see Section 2.2.

We refer to [8], [9] for the precise definition and other properties of the fractional Laplacian operator.
The simplest way to define the Green kernel Gα is via its Fourier transform

FGα(t, ·)(ξ) = e−t|ξ|
α (3.3)

i.e. for t ≥ 0, x ∈ Rd,
Gα(t, x) =

∫
Rd
e−〈x,ξ〉e−t|ξ|

α

dξ. (3.4)

Due to the formula (2.5), we can write the random variable u(t, x) given by (3.2) as a multiple
stochastic integral in the qth Wiener chaos, i.e. for every t ≥ 0, x ∈ Rd,

u(t, x) = Iq(Ht,x)
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with

Ht,x ((s1, z1), . . . , (sq, zq)) (3.5)

= c(H, q)
∫ t

0
du
∫
Rd
dyGα(t− u, x− y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ (3.6)

for every ((s1, z1), . . . , (sq, zq)) ∈
(
R+ × Rd

)q
.

We say that the mild solution to the fractional heat equation (3.1) exists if the Wiener-Hermite
integral in (3.2) is well-defined. In the next paragraph, we give a necessary and sufficient condition
for the existence of the mild solution (3.2).

A basic tool for our calculation is the Parseval identity

αH

∫
Rd

∫
Rd
ϕ(x)ψ(y)|x− y|2H−2dydx = aH

∫
Rd
Fϕ(ξ)Fψ(ξ)|ξ|1−2Hdξ (3.7)

with some positive constant aH, for every ϕ, ψ such that∫
Rd
|ϕ(x)ψ(y)||x− y|2H−2dydx <∞.

3.1 Existence of the Solution

Let us give the condition for the existence of the mild solution (3.2). We have the following result.

Proposition 3.1. Let
(
u(t, x), t ≥ 0, x ∈ Rd

)
be given by (3.2). For every t ≥ 0, x ∈ Rd, the random

variable u(t, x) belongs to L2(Ω) if and only if

d < αH0 +H1 + . . .+Hd. (3.8)

Moreover, under (3.8), for every T > 0, p ≥ 2,

sup
t∈[0,T ],x∈Rd

E|u(t, x)|p ≤ Cp,T (3.9)

where Cp,T > 0 is a constant that depends only on T, p.

Proof. For t ≥ 0, x ∈ Rd, we have by the Wiener-Hermite isometry (2.7)

Eu(t, x)2 = αH0αH

∫ t

0

∫ t

0
dudv|u− v|2H0−2

×
∫
Rd

∫
Rd
dydzGα(t− u, x− y)Gα(t− v, x− z)|y − z|2H−2

where we recall that (see convention (2.1))

|y − z|2H−2 =
d∏
j=1
|yj − zj |v2Hj−2 if y = (y1, .., yd), z = (z1, ..., zd) ∈ Rd.

By using Parseval’s identity (3.7) and the expression of the Fourier transform of the Green kernel
(3.3)
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Eu(t, x)2 = C
∫ t

0

∫ t

0
dudv|u− v|2H0−2∫

Rd
dξFGα(t− u, x− ·)(ξ)FGα(t− v, x− ·)(ξ)|ξ|1−2H

= C
∫ t

0

∫ t

0
dudv|u− v|2H0−2

∫
Rd
dξe−u|ξ|

α

e−v|ξ|
α |ξ|1−2H

= C
∫ t

0

∫ t

0
dudv|u− v|2H0−2

∫
Rd
dξe−(u+v)|ξ|α

d∏
j=1
|ξi|1−2Hj

where C > 0 may change from line to line. Now we use the change of variables ξ̃i = (u + v) 1
α ξi for

i = 1, ..., d and we obtain

Eu(t, x)2

= C
∫ t

0

∫ t

0
dudv|u− v|2H0−2(u+ v)−

d
α (u+ v)

1
α

(2(H1+...Hd)−d)
∫
Rd
dξe−|ξ|

α |ξ|1−2H

= C
∫ t

0

∫ t

0
dudv|u− v|2H0−2(u+ v)−

d
α (u+ v)−

1
α

(
∑d

j=1(1−2Hj))

= C
∫ t

0
du
∫ u

0
dv|u− v|2H0−2(u+ v)−

d
α (u+ v)

1
α

(2(H1+...Hd)−d).

where we used the fact that
∫
Rd dξe

−|ξ|α |ξ|1−2H < ∞ for H ∈
(

1
2 , 1

)d
. By the change of variables

v
u = z, we can write

Eu(t, x)2 = C
∫ 1

0
duu2H0−1u−2 d

α
+ 2
α

(H1+...Hd)
∫ 1

0
dz(1− z)2H0−2(1 + z)−2 d

α
+ 2
α

(H1+...Hd)

= C
∫ t

0
duu2H0−1u−2 d

α
+ 2
α

(H1+...Hd) (3.10)

because the integral
∫ 1

0
dz(1− z)2H0−2(1 + z)−2 d

α
+ 2
α

(H1+...Hd) is finite for H0 >
1
2 . The integral du in

(3.10) is finite if and only if
2H0 − 2 d

α
+ 2
α

(H1 + . . . Hd) > 0
or

d < αH0 + (H1 + . . .+Hd).
If (3.8) holds, then by (3.10) we find

E|u(t, x)|2 = Ct2H0−2 d
α

+ 2
α

(H1+...Hd) ≤ CT 2H0−2 d
α

+ 2
α

(H1+...Hd) := CT <∞

and then (3.9) follows due to the hypercontractivity property (5.3), because the random variable
u(t, x) belongs to the qth Wiener chaos.
Remark 3.2. 1. For α = 2, we retrieve the condition from [19], namely

d < 2H0 +H1 + . . .+Hd.

2. When α > 1 and H0, H1, ..., Hd are all very close to 1
2 , then (3.8) becomes d < α

2 + d
2 which

means d < α so we can consider only the situation when the spatial dimension is d = 1. If all
the Hurst indices are very close to 1, then (3.8) always holds true and then we can consider any
dimension in space.

3. If α ∈ (0, 1) is small enough then the solution may not exist even in dimension d = 1.
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3.2 Self-Similarity

In the sequel, we assume (3.8). The next step is to analyze the scaling property of the process
(u(t, x), t ≥ 0) when the spatial variable x ∈ Rd is fixed. We will prove the following self-similarity
property.
Proposition 3.3. The process (u(t, x), t ≥ 0) given by (3.2) is self-similar of order

γ = H0 −
d

α
+
∑d
i=1 Hi

α
(3.11)

Proof. Using the definition of the Wiener-Hermite integral (see (2.5) and (2.6)),

u(t, x) = c(H, q)
∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, z1) . . .W (dsq, zq)∫ t

0
du
∫
Rd
dyGα(t− u, x− y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ .

Let a > 0. Then

u(at, x) = c(H, q)
∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, z1) . . .W (dsq, zq)∫ at

0
du
∫
Rd
dyGα(at− u, x− y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+

= c(H, q)a
∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, z1) . . .W (dsq, zq)∫ t

0
du
∫
Rd
dyGα(a(t− u), x− y)(au− s1)

−( 1
2 + 1−H0

q )
+ . . . (au− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)−( 1
2 + 1−H

q ) . . . (y − zq)−( 1
2 + 1−H

q )

= c(H, q)a
∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (d(as1), z1) . . .W (d(asq), zq)∫ t

0
du
∫
Rd
dyGα(a(t− u), x− y)(au− as1)

−( 1
2 + 1−H0

q )
+ . . . (au− asq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ .

Using the fact that the Brownian sheet W is 1
2 -self-similar with respect to its time variable and its

increments are stationary in space, we get (we denote everywhere by ≡(d) the equivalence of the finite
dimensional distributions),

u(at, x) ≡(d) c(H, q)aa−q(
1
2 + 1−H0

q )a
q
2

∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, z1) . . .W (dsq, zq)∫ t

0
du
∫
Rd
dyGα(a(t− u),−y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ .

We use the following property of the Green kernel (see e.g. [6])

Gα(at, x) = a−
d
αGα(t, a−

1
αx).
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Then

u(at, x) ≡(d) c(H, q)aH0a−
d
α

∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, z1) . . .W (dsq, zq)∫ t

0
du
∫
Rd
dyGα(t− u,−a−

1
α y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ .

Next, we make the change of variables a− 1
α yi = ỹi for i = 1, ..., d and then z̃i = a−

1
α zi for i = 1, ..., d.

We will obtain

u(at, x) ≡(d) c(H, q)aH0a−
d
αa

d
α

∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, d(a

1
α z1)) . . .W (dsq, d(a

1
α zq))∫ t

0
du
∫
Rd
dyGα(t− u,−y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(a
1
α (y − z1))

−( 1
2 + 1−H

q )
+ . . . (a

1
α (y − zq))

−( 1
2 + 1−H

q )
+

= c(H, q)aH0a−
q
α

∑d

i=1( 1
2 + 1−Hi

q )∫
R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, d(a

1
α z1)) . . .W (dsq, d(a

1
α zq))∫ t

0
du
∫
Rd
dyGα(t− u,−y)(u− s1)

−( 1
2 + 1−H0

q )
+ . . . (u− sq)

−( 1
2 + 1−H0

q )
+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ .

Finally, we use the spatial scaling property of the Brownian sheet W to get

u(at, x) ≡(d) c(H, q)aH0a−
q
α

∑d

i=1( 1
2 + 1−Hi

q )a
dq
2α∫

R

∫
Rd
. . .
∫
R

∫
Rd
W (ds1, z1) . . .W (dsq, zq)∫ t

0
du
∫
Rd
dyGα(t− u,−y)(u− s1)−( 1

2 + 1−H0
q ) . . . (u− sq)−( 1

2 + 1−H0
q )

(y − z1)−( 1
2 + 1−H

q ) . . . (y − zq)−( 1
2 + 1−H

q )

so for x ∈ R fixed,

(u(at, x), t ≥ 0) ≡(d)
(
aH0− d

α
+
∑d

i=1
Hi

α u(t, x), t ≥ 0
)

= (aγu(t, x), t ≥ 0)

with γ in (3.11).
Remark 3.4. Notice that the self-similarity index γ given by (3.11) is strictly positive, due to condition
(3.8). Also, we have γ < H0 < 1 since

γ = H0 −
d−

∑d
i=1 Hi

α
≤ H0 < 1.

For α = 2, we found the scaling index from [19].

3.3 Regularity of the Sample Paths

Here, we analyze the regularity of the sample paths t → u(t, x). Let us start by estimating the
L2(Ω)-norm of the increment u(t, x)− u(s, x) with 0 ≤ s < t and x ∈ Rd.
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Proposition 3.5. Let u be defined by (3.2) and assume (3.8). Then for every 0 ≤ s < t and x ∈ Rd,
we have

E |u(t, x)− u(s, x)|2 ≤ C|t− s|2γ (3.12)
with γ given by (3.11) and C > 0 independent of s, t, x.

Proof. For 0 ≤ s < t, we can write

u(t, x)− u(s, x) =
∫ t

s

∫
Rd
Gα(t− v, x− y)Z(q)

(H0,H),d+1(dv, dy)

+
∫ s

0

∫
Rd

(Gα(t− v, x− y)−Gα(s− v, x− y))Z(q)
(H0,H),d+1(dv, dy)

= T1(s, t) + T2(s, t)

so
E |u(t, x)− u(s, x)|2 ≤ 2

(
E|T1(s, t)|2 + E|T2(s, t)|2

)
.

Now, for 0 ≤ s < t,

E|T1(s, t)2|

= C
∫ t

s

∫ t

s
dudv|u− v|2H0−2

∫
Rd

∫
Rd
dydxGα(t− u, x− y)Gα(t− v, x− z)|y − z|2H−2

= C
∫ t

s

∫ t

s
dudv|u− v|2H0−2

∫
Rd
dξe−(t−u)|ξ|αe−(t−v)|ξ|α |ξ|1−2H

= C
∫ t−s

0

∫ t−s

0
dudv|u− v|2H0−2

∫
Rd
dξe−(u+v)|ξ|α |ξ|1−2H.

By the change of variables (u+ v) 1
α ξi = ξ̃i for i = 1, ..., d,

E|T1(s, t)2|

= C
∫ t−s

0

∫ t−s

0
dudv|u− v|2H0−2(u+ v)−

d
α (u+ v)−

1
α

∑d

i=1(1−2Hi)
∫
Rd
dξe−|ξ|

α |ξ|1−2H

= C
∫ t−s

0
du× u2H0−1u−

d
αu−

1
α

∑d

i=1(1−2Hi) = C
∫ t−s

0
duu2γ−1

= C|t− s|2γ .

Concerning T2(s, t), we have

E|T2(s, t)|2 = C
∫ s

0

∫ s

0
dudv|u− v|2H0−2

∫
Rd
dξ|ξ|1−2H(

e−(t−u)|ξ|α − e−(s−u)|ξ|α
) (
e−(t−v)|ξ|α − e−(s−v)|ξ|α

)
= C|t− s|2H0

∫ s
t−s

0

∫ s
t−s

0
dudv|u− v|2H0−2

∫
Rd
dξ|ξ|1−2H(

e−(t−s)(1+u)|ξ|α − e−(t−s)u|ξ|α
) (
e−(t−s)(1+v)|ξ|α − e−(t−s)v|ξ|α

)
where we performed the chage of variables ũ = s−u

t−s , ṽ = s−v
t−s . in the next step, we set ξ̃i = (t− s) 1

α ξi
for every i = 1, ..., d. In this way,
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E|T2(s, t)|2

= C|t− s|2H0(t− s)−
d
α

+
∑d

i=1(1−2Hi)
∫ s

t−s

0

∫ s
t−s

0
dudv|u− v|2H0−2

∫
Rd
dξ|ξ|1−2H(

e−(2+u+v)|ξ|α − 2e−(1+u+v)|ξ|α + e−(u+v)|ξ|α − 2
)

≤ C(t− s)2γ
∫ ∞

0

∫ ∞
0

dudv|u− v|2H0−2
∫
Rd
dξ|ξ|1−2H(

e−(2+u+v)|ξ|α − 2e−(1+u+v)|ξ|α + e−(u+v)|ξ|α
)

= C(t− s)2γ
∫
Rd
dξ|ξ|1−2He−|ξ|

α
∫ ∞

0

∫ ∞
0

dudv|u− v|2H0−2[
(2 + u+ v)−

d
α
− 1
α

∑d

i=1(1−2Hi) − 2(1 + u+ v)−
d
α
− 1
α

∑d

i=1(1−2Hi) + (u+ v)−
d
α
− 1
α

∑d

i=1(1−2Hi)
]

= C(t− s)2γ
∫ ∞

0

∫ ∞
0

dudv|u− v|2H0−2[
(2 + u+ v)2γ−2H0 − 2(1 + u+ v)2γ−2H0 + (u+ v)2γ−2H0

]
.

For u, v close to infinity, we have

(2 + u+ v)2γ−2H0 − 2(1 + u+ v)2γ−2H0 + (u+ v)2γ−2H0 ≤ C|u+ v|2γ−2H0−2

and the above integral dudv is convergent at infinity because 2γ < 2 or equivalently

H0 −
1

2α

(
d−

d∑
i=1

Hi

)
≤ 1.

As an immediate consequence of Proposition 3.5, we obtain the Hölder regularity in time of the
solution.
Corollary 3.6. The mapping t → u(t, x) is Hölder continuous of order δ for every δ ∈ (0, γ), with
γ given by (3.11).

Proof. From (3.12) and by using the hypercontractivity (5.3), we have for p ≥ 2,

E |u(t, x)− u(s, x)|p ≤ Cp|t− s|pγ

for every 0 ≤ s < t and x ∈ Rd. The conclusion follows by Kolmogorov’s continuity criterion.

3.4 A Decomposition of the Solution

Consider the random field (u(t, x), t ≥ 0, x ∈ Rd) which is mild solution to (3.1) and assume (3.8)
is satisfied. We have seen in Section 3.2 that the the random field u is self-similar in time and it is
pretty obvious that it has no stationary increments with respect to the time variable. The purpose
is to give a decomposition of the solution to the fractional stochastic heat equation (3.1) as a sum of
a self-similar process in time with temporal stationary increments and of another process with very
nice sample paths in time. This decomposition is useful, among others, to get the behavior of the
p− variation of the solution.

We will use the so-called pinned string method introduced in [12] and then used by several authors
(in e.g. [23], [10], [13], [19]). Let us set, for t ≥ 0, x ∈ Rd,

U(t, x) =
∫
R

∫
Rd

(Gα((t− s)+, x− y)−Gα((−s)+, x− y))Z(q)
(H0,H),d+1(ds, dy). (3.13)



3 Fractional Heat Equation with Hermite Noise 11

This is called the pinned string process. We can also write

U(t, x) =
∫ t

0

∫
R
Gα(t− s, x− y)Z(q)

(H0,H),d+1(ds, dy)

+
∫ 0

−∞

∫
R

(Gα(t− s, x− y)−Gα(−s, x− y))Z(q)
(H0,H),d+1(ds, dy).

We will first show that U has the scaling property in time and it also has stationary temporal
increments. Then we will show that the difference u(t, x) − U(t, x) has C∞ -sample paths with
respect to the time variable.
Proposition 3.7. Let x ∈ Rd be fixed. Then the process (U(t, x), t ≥ 0) defined by (3.13) is γ-self-
similar and it has stationary increments.

Proof. The self-similarity follows as above in the proof of Proposition 3.3. Let us show that for every
h > 0, the stochastic processes

(U(t+ h, x)− U(h, x), t ≥ 0) and (U(t, x)), t ≥ 0)

have the same finite dimensional distributions. We can write, for h > 0,

U(t+ h, x)− U(h, x)

=
∫
R

∫
Rd

(Gα((t+ h− s)+, x− y)−Gα((h− s)+, x− y))Z(q)
(H0,H),d+1(ds, dy)

≡(d)
∫
R

∫
Rd

(Gα((t− s)+, x− y)−Gα((−s)+, x− y))Z(q)
(H0,H),d+1(ds, dy)

= U(t, x)

where we used the fact that the process (Z(q)
(H0,H),d+1(t, x), t ≥ 0) has stationary increments in time.

From the above result, it follows (see e.g. [22]) that the covariance of the process (U(t, x), t ≥ 0)
is given by

EU(t, x)U(s, x) = EU(1, x)2

2
(
t2γ + s2γ − |t− s|2γ

)
, t, s ≥ 0.

On the other hand, since (U(t, x), t ≥ 0) is not a Gaussian process, the covariance did not determine
the probability distribution of this stochastic process.

Set, for t > 0 and x ∈ Rd,
Y (t, x) = u(t, x)− U(t, x)

so
Y (t, x) = −

∫ 0

−∞

∫
Rd

(Gα(t− s, x− y)−Gα(−s, x− y))Z(q)
(H0,H),d+1(ds, dy). (3.14)

We will show that the random field Y has smooth sample paths with respect to the time variable.
Proposition 3.8. Let (Y (t, x), t > 0, x ∈ Rd) be given by (3.14)and assume (3.8). Then for every
x ∈ Rd, the sample paths t→ Y (t, x) are absolutely continuous and of class C∞ on (0,∞).

Proof. Set

Y ′(t, x) = −
∫ 0

−∞

∫
Rd

∂

∂t
Gα(t− s, x− y)Z(q)

(H0,H),d+1(ds, dy), t > 0, x ∈ Rd, (3.15)
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the formal derivative of Y with respect to the time variable t. We will have (again C > 0 denotes a
generic constant) via (3.7)

E|Y ′(t, x)|2 = C
∫ 0

−∞

∫ 0

−∞
dudv|u− v|2H0−2

∫
Rd
dξ|ξ|1−2H

(
∂

∂t
e−(t−u)|ξ|α

)(
∂

∂t
e−(t−v)|ξ|α

)
= C

∫ 0

−∞

∫ 0

−∞
dudv|u− v|2H0−2

∫
Rd
dξ|ξ|1−2H+2α

×e−(t−u)|ξ|αe−(t−v)|ξ|α

= C
∫ ∞
t

∫ ∞
t

dudv|u− v|2H0−2
∫
Rd
dξ|ξ|1−2H+2αe−(u+v)|ξ|α

and by setting (u+ v) 1
α ξi = ξ̃i for i = 1, ..., d, we get

E|Y ′(t, x)|2 = C
∫ ∞
t

∫ ∞
t

dudv|u− v|2H0−2(u+ v)−
d
α (u+ v)−

1
α

∑d

i=1(1+2α−2Hi)∫
Rd
dξ|ξ|1−2H+2αe−|ξ|

α

= C
∫ ∞
t

∫ ∞
t

dudv|u− v|2H0−2(u+ v)−
d
α (u+ v)−

1
α

∑d

i=1(1+2α−2Hi).

Thus, with z = u
v

E|Y ′(t, x)|2

= C
∫ ∞
t

dv
∫ ∞
v

du(u− v)2H0−2(u+ v)−
2d
α
−2d+ 2

α

∑d

i=1 Hi

= C
∫ ∞
t

dvv2H0−1− 2d
α
−2d+ 2

α

∑d

i=1 Hi

∫ ∞
1

dz(z − 1)2H0−1(1 + z)−
2d
α
−2d+ 2

α

∑d

i=1 Hi

= C
∫ ∞
t

dvv2γ−1−2d
∫ ∞

1
(1− z)2H0−2(1 + z)2γ−2H0−2d.

The integral dv is finite because 2γ−2d < 0 (see Remark 3.4) and the integral dx is finite at 1 because
2H0 > 1 and at infinity because 2γ− 2d− 1 < 0 (again by Remark 3.4). Therefore (Y ′(t, x), t > 0) is
a well defined random field and consequently t → Y (t, x) is absolute continuous and of class C1 on
(0,∞). Similarly (see [13], [19] or [23] for details), we can deal with the nth derivative and we can
show that t→ Y (t, x) is of class C∞ on (0,∞).

3.5 p-Variation

We will use the above decomposition result in order to obtain the p-variation in time of the solution
u. Let us first define the concept of p-variation. Consider 0 ≤ A1 < A2 two real numbers and let

ti = A1 + i

N
(A2 − A1), i = 0, ..., N (3.16)

be a partition of the interval [A1, A2]. Let (v(t, x), t ≥ 0, x ∈ Rd) a general random field and define,
for x ∈ Rd, p > 0 and N ≥ 1

SN,p[A1,A2](v(·, x)) =
N−1∑
i=0
|v(ti+1, x)− v(ti, x)|p . (3.17)

We will say that v admits a temporal p-variation over the interval [A1, A2] if the sequence(
SN,p[A1,A2](v(·, x)), N ≥ 1

)
converges in probability as N →∞.

For the solution to the fractional stochastic heat equation, we have the following result. Recall
that γ is given by (3.11).
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Theorem 3.9. Let (u(t, x), t ≥ 0, x ∈ Rd) be defined by (3.2) and assume (3.8). Then

S
N, 1

γ

[A1,A2](u(·, x))→N→∞ E |U(1, 0)|
1
γ (A2 − A1) in probability

where U is given by (3.13).

Proof. In a first step, we will show that the p-variation of the random field Y given by (3.14) vanishes,
for every p ≥ 1

γ . Indeed, for p ≥
1
γ > 1

N−1∑
i=0
|Y (ti+1, x)− Y (ti, x)|p ≤ sup

|a−b|≤A2−A1
N

|Y (a, x)− Y (b, x)|p−1
N−1∑
i=0
|Y (ti+1, x)− Y (ti, x)| .

Recall from Proposition 3.8 that Y has absolute continuous temporal sample paths. The continuity
of Y with respect to the time variable and p > 1 implies that

sup
|a−b|≤A2−A1

N

|Y (a, x)− Y (b, x)|p−1 →N→∞ 0

pointwise while the quantity ∑N−1
i=0 |Y (ti+1, x)− Y (ti, x)| is bounded by the total variation of t →

Y (t, x) over the interval [A1, A2]. Consequently,

N−1∑
i=0
|Y (ti+1, x)− Y (ti, x)|p →N→∞ 0 pointwise. (3.18)

Let us now analyze the 1
γ -variation of the random field U . We have, by the scaling propery in time

of U obtained in Proposition 3.7, if ” =(d) ” stands for the equality in distribution,
N−1∑
i=0
|U(ti+1, x)− U(ti, x)|p =(d) (A2 − A1)γp 1

nγp

N−1∑
i=0
|U(i+ 1, x)− U(i, x)|p

= (A2 − A1)γp 1
nγp−1VN (3.19)

with

VN = 1
N

N−1∑
i=0
|U(i+ 1, x)− U(i, x)|p .

The sequence (U(i + 1, x) − U(i, x), i ≥ 0) is stationary due to the fact that (U(t, x), t ≥ 0) has
stationary increments, see Proposition 3.7. On the other hand, U(t, x) is an element of the qth
Wiener chaos, for every t ≥ 0, x ∈ Rd. Actually, we have

U(t, x) =
∫
R

∫
Rd
Gt,x ((s1, z1), . . . , (sq, zq))W (ds1, dz1) . . .W (dsq, dzq)

where

Gt,x ((s1, z1), . . . (sq, zq))

= c(H, q)
∫
R
du
∫
Rd
dy (Gα((t− u)+, x− y)−Gα((−u)+, x− y))

(u− s1)
−( 1

2 + 1−H0
q )

+ . . . (u− sq)
−( 1

2 + 1−H0
q )

+ (y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+ .
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Moreover,

Gt,x ((s1, z1), . . . (sq, zq))−Gs,x ((s1, z1), . . . (sq, zq))

= c(H, q)
∫
R
du
∫
Rd
dy (Gα((t− u)+, x− y)−Gα((s− u)+, x− y))

(u− s1)
−( 1

2 + 1−H0
q )

+ . . . (u− sq)
−( 1

2 + 1−H0
q )

+ (y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+

= c(H, q)
∫
R
du
∫
Rd
dy (Gα((t− s− u)+, x− y)−Gα((−u)+, x− y))

×(u− (s1 − s))
−( 1

2 + 1−H0
q )

+ . . . (u− (sq − s)
−( 1

2 + 1−H0
q )

+

(y − z1)
−( 1

2 + 1−H
q )

+ . . . (y − zq)
−( 1

2 + 1−H
q )

+

so

Gt,x ((s1, z1), . . . (sq, zq))−Gs,x ((s1, z1), . . . (sq, zq))
= Gt−s,x ((s1 − s, z1), . . . (sq − s, zq)) . (3.20)

Since the kernel Gt,x satisfies the shifting property (3.20), it follows from Theorem 8.3.1 in [18] that
the sequence (U(i+ 1, x)− U(i, x), i ≥ 0) is also mixing. Theorefore (see e.g. Chapter 2 in [18])

VN →N→∞ E |U(1, 0)|p almost surely and in L1(Ω). (3.21)
By (3.19) and (3.21) we obtain (since the convergence in law to a constant implies the convergence
in probability)

N−1∑
i=0
|U(ti+1, x)− U(ti, x)|p →N→∞


0, if p > 1

γ

E|U(1, 0)|
1
γ (A2 − A1) if p = 1

γ

+∞ if p < 1
γ

(3.22)

in probability. Now, by using Minkovski’s inequality

(
N−1∑
i=0
|U(ti+1, x)− U(ti, x)|p

) 1
p

−
(
N−1∑
i=0
|Y (ti+1, x)− Y (ti, x)|p

) 1
p

≤ SN,p[A1,A2](u(·, x)))

≤
(
N−1∑
i=0
|U(ti+1, x)− U(ti, x)|p

) 1
p

+
(
N−1∑
i=0
|Y (ti+1, x)− Y (ti, x)|p

) 1
p

.

To get the conclusion, it suffices to use (3.18) and (3.22).
Remark 3.10. From the proof of Theorem 3.9, we notice that the solution (3.2) has zero p variation
in time on any interval [A1, A2] if p > 1

γ .

4 Drift Parameter Estimation

Now, we consider the parametrized fractional stochastic heat equation with Hermite noise

∂uθ
∂t

(t, x) = −θ(−∆)
α
2 uθ(t, x) + Ż

(q)
(H0,H),d+1(t, x), t ≥ 0, x ∈ Rd (4.1)

with vanishing initial condition uθ(0, x) = 0 for every x ∈ Rd. Our purpose is to estimate the drift
parameter θ > 0 in (4.1) based on the observation of the solution uθ at discrete times and at a
fixed point in space. That is, we assume that we have at our disposal the observations (uθ(ti, x), i−
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0, 1, ..., N) with ti = i
N for i = 0, 1, ..., N and x ∈ Rd. Again, the noise Z(q)

(H0,H),d+1 is a d + 1-

parameter Hermite process with Hurst index (H0,H) ∈
(

1
2 , 1

)d+1
where H = (H1, . . . , Hd).

Since the Green kernel that solves ∂uθ
∂t (t, x) = −θ∆uθ(t, x) is Gα(θt, x) with Gα defined by (3.4),

the mild solution to (4.1) can be written as

uθ(t, x) =
∫ t

0

∫
Rd
Gα(θ(t− s), x− y)Z(q)

(H0,H),d+1(ds, dy) (4.2)

where the integral Z(q)
(H0,H),d+1(ds, dy) is a Wiener-Hermite integral described in Section 2.2. It follows

from Proposition 3.1 that (4.2) is well-defined if and only if condition (3.8) holds.
The key observation is that, via a trivial transform of the solution, we can move the drift θ in front

of the random noise. This remark will allow to apply the p-variation method in order to estimate the
drift parameter. This idea has been used in [11] or [17].

Let us define, for t ≥ 0 and x ∈ Rd,

vθ(t, x) = uθ

(
t

θ
, x

)
. (4.3)

We have the following result for vθ.
Proposition 4.1. The random field (vθ(t, x), t ≥ 0, x ∈ Rd) satisfies, in the mild sense, the following
SPDE

∂vθ
∂t

= −(−∆)
α
2 vθ(t, x) + θ−H0Ż

(q)
(H0,H),d+1(t, x), t ≥ 0, x ∈ Rd (4.4)

with vanishing initial condition vθ(0, x) = 0 for every x ∈ Rd

Proof. We have, by the definition of the mild solution (4.2), for t ≥ 0 and x ∈ Rd,

vθ(t, x) =
∫ t

θ

0

∫
Rd
Gα(t− θs, x− y)Z(q)

(H0,H),d+1(ds, dy)

=
∫ t

0

∫
Rd
Gα(t− s, x− y)Z(q)

(H0,H),d+1(d(s
θ
, dy)

and by using the H0-self-similarity in time of Z(q)
(H0,H),d+1, we obtain

vθ(t, x) ≡(d) θ−H0

∫ t

0

∫
Rd
Gα(t− s, x− y)Z(q)

(H0,H),d+1(ds, dy)

= θ−H0u1(t, x). (4.5)

which means that vθ verifies (4.4) in the mild sense.

From Theorem 3.9, we deduce immediately the behavior of the p-variation in time for the random
field uθ. Recall the notation (3.17), for p > 0, x ∈ Rd,

SN,p[A1,A2](uθ(·, x)) =
N−1∑
i=0
|uθ(ti+1, x)− uθ(ti, x)|p

with ti, i = 0, 1, ..., N given by (3.16). If [A1, A2] = [0, t], then we use the notation SN,p[A1,A2] = SN,pt .

Proposition 4.2. Let uθ be the solution to the parametrized heat equation defined by (4.2) and
assume (3.8). Then

S
N, 1

γ

[A1,A2](uθ(·, x))→N→∞ θ1−H0
γ (A2 − A1)E |U(1, 0)|

1
γ in probability.
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Proof. We have, for every x ∈ Rd and N ≥ 1, via (4.3),

S
N, 1

γ

[A1,A2](uθ(·, x)) =
N−1∑
i=0
|uθ(ti+1, x)− uθ(ti, x)|

1
γ

=
N−1∑
i=0
|vθ(θti+1, x)− vθ(θti, x)|

1
γ

=(d) θ−
H0
γ

N−1∑
i=0
|u1(θti+1, x)− u1(θti, x)|

1
γ

where for the last equality we used (4.5). Notice that θti, i = 0, . . . , N constitutes a partition of the
interval [θA1, θA2]. Then, by Theorem 3.9,

N−1∑
i=0
|u1(θti+1, x)− u1(θti, x)|

1
γ →N→∞ (θA2 − θA1)E |U(1, 0)|

1
γ .

Consequently,

S
N, 1

γ

[A1,A2](uθ(·, x))→N→∞ θ1−H0
γ (A2 − A1)E |U(1, 0)|

1
γ in probability

with U given by (3.13).

Remark 4.3. If H0 = 1
2 , d = 1 and H1 = 1

2 (which corresponds to the situation of the space-time
white noise), we have γ = 1

2

(
1− 1

α

)
and 1− H0

γ = − 1
α−1 . We retrieve a result in [11].

Assume that we have the observations (uθ(ti, x), i = 0.1, .., N) with ti given by (3.16), i.e. the
solution is discretely observed during the time interval [A1.A2] at some fixed point in space. From
Proposition 4.2, we can define the following natural estimator for the drift parameter θ

θ̂N =

 1
(A2 − A1)E |U(1, 0)|

1
γ

S
N, 1

γ

[A1,A2](uθ(·, x))


γ

γ−H0

. (4.6)

We deduce the following asymptotic behavior for (4.6).

Proposition 4.4. The estimator θ̂N given by (4.6) is consistent, i.e. θ̂N converges in probability to
θ as N →∞.

Proof. It is an immediate consequence of Proposition 4.2.

Remark 4.5. The asymptotic distribution of the estimator θ̂N is rather complex, since it involves
the power increments of the Hermite sheet. The intuition is that the limit behavior of (4.6) is not
Gaussian, since, for instance, the limit behavior of the quadratic variations of the Hermite process is
not Gaussian (see e.g. [22]).

5 Appendix: Multiple Stochastic Integrals

Here, we shall only recall some elementary facts concerning the multiple stochastic integrals; our main
reference is [15]. Consider H a real separable infinite-dimensional Hilbert space with its associated
inner product 〈., .〉H, and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space
(Ω,F,P), which is a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ, ψ〉H,
for every ϕ, ψ ∈ H. Denote by Iq the qth multiple stochastic integral with respect to B. This Iq is
actually an isometry between the Hilbert space H�q (symmetric tensor product) equipped with the
scaled norm 1√

q!‖ · ‖H⊗q and the Wiener chaos of order q, which is defined as the closed linear span
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of the random variables Hq(B(ϕ)) where ϕ ∈ H, ‖ϕ‖H = 1 and Hq is the Hermite polynomial of
degree q ≥ 1 defined by:

Hq(x) = (−1)q exp
(
x2

2

)
dq

dxq

(
exp

(
−x

2

2

))
, x ∈ R. (5.1)

The isometry of multiple integrals can be written as: for p, q ≥ 1, f ∈ H⊗p and g ∈ H⊗q,

E
(
Ip(f)Iq(g)

)
=
{
q!〈f̃ , g̃〉H⊗q if p = q

0 otherwise.
(5.2)

It also holds that:
Iq(f) = Iq

(
f̃
)
,

where f̃ denotes the canonical symmetrization of f and it is defined by:

f̃(x1, . . . , xq) = 1
q!
∑
σ∈Sq

f(xσ(1), . . . , xσ(q)),

in which the sum runs over all permutations σ of {1, . . . , q}.
An important property of finite sums of multiple integrals is the hypercontractivity. Namely, if

F = ∑n
k=0 Ik(fk) with fk ∈ H⊗k then

E|F |p ≤ Cp
(
EF 2

) p
2 . (5.3)

for every p ≥ 2. In this work, the role of the Hilbert space H will be played by L2
((

R+ × Rd
)q)

.
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