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On a partial differential equation /7(7)

related to the diamond Bessel Klein-Gordon
operator

SUDPRATHAI BUPASIRI AND KRAILIKHIT LATPALA

Abstract

In this paper, we consider the equation
t
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where O%’m is the operator iterated k-times and is defined by
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where p+q = n,z = (21,...,2n) € R}, B, = %Jr%la%i,vi =20 + 1,5 > f% 6], z; > 0,5 = 1,2,...,n,¢r is a

constant, k is a nonnegative integer, ¢ is the Dirac-delta distribution, O%mﬁ = § and n is the dimension of R;}. It is shown
that, depending on the relationship between k and ¢, the solution to this equation can be ordinary functions, tempered
distributions, or singular distributions.

Keywords: Bessel diamond operator, Diamond Bessel Klein Gordon, Dirac-delta distribution.

MSC 2020. Primary: 46F10

1 Introduction

Kananthai [I] has studied the partial differential operator oF and is named as the diamond operator
iterated k-times, which is defined by

2\ k
= (Zaw ) s 7 (L)
O = - 9 p + q=n .
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where n is the dimension of the space R”, for x = (xl,acg, ..., xp) € R™ and k is a non-negative
integer. The operator o can be expressed in the form o* DkAk AFOF, where the operator AF
is the Laplace operator and which is defined by
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and the operator (J* is the ultra-hyperbolic operator and which is defined by

2 o 2 o2 02 92 \"

k
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Satsanit [I2] has showed that

S (5 2)) (e - (252)

Jj=p+1

Satsanit [13] has studied the diamond Bessel Klein - Gordon operator related to linear differential
equation of the form ({p + m?)*u(x) = &, we obtain u(x) = Wag(z,m) is the elementary solution
of the diamond Bessel Klein - Gordon operator, ¢ is the Dirac - delta distribution. Lunnaree and
Nonlaopon [4] have introduced the operator (¢» +m?2)*, that is named as the diamond Klein-Gordon
operator, which is defined by
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P52 \? pta g2
(O +m?)t = (ZaQ) | X 2] T
=1 9% Jj=p+1 Ly
where p + ¢ = n is the dimension of the space R", for = (z1,9,...,2,) € R", m is a nonnegative

real number and k is a nonnegative integer, see |2, [3, 8, 9] for more details. Later, Yildirim, Sarikaya
and Ozturk [7] have studied the Bessel diamond operator, which is defined by

2\ k
P 2 ptq
oy = (ZBM) —| > B, (1.5)
i=1 j=p+1

p p+q k p pt+q k
— ;BM— > By, ;Bxﬂt > B, | -

Jj=p+1 Jj=p+1

Yildirim, Sarikaya and Ozturk have showed that the function u(z) = (—1)*Sox(z) * Rop(z) is the

unique elementary solution for the operator o%, where * indicates convolution, Roy(z) and Sax(z)
are defined by (2.2) and (2.3) respectively, that is,

o ((=1)*Sar(w) * Rag(x)) =0,

reR ={z:x=(21,...,2,),21 >0,...,2, > 0}. For k = 1 the operator ¢p can be expressed in
the form op = Az 0p = Op Az where (p is the Bessel ultra-hyperbolic operator,

DB:BQ?I_I—BM—F'“—FBIP_B‘T;:H_Bmp+2_ _B‘TP-HI

where p + ¢ = n and Ap is the Laplace Bessel operator,
AB:Bwl+Bﬂc2+"'+Bﬂ?p+B$p+1+Bﬂ?p+2+"'+B$p+q

Bupasiri [IT] has introduced the elementary solution of the n-dimensional &% operator and showed
that the solution of the convolution form (—1)3*Se(z) * Rex(x) * (C**(z))*~! is a unique elementary
solution of the equation @®%u(z) = &, where

of = (;:BIX— ( If ij)4

J=p+1

k

We consider the equation

t
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r=0
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where <>’f37m is the operator and which is defined by

i p 2 2 2 ptq 2 m2
o = (Zl Bxl) +5 ] - Z By | =%
1= Jj=p+1

P 2 p+q 2 g P 2 p+q 2\
— <Z sz-) — > B, | +m® (Z B%) +{ Y. B,
i=1 j=p+1 i=1 j=p+1
= (op +m?) ok (1.6)
where
2 k
p 2 p+q
(op +m*)F = <Z Bwi> - ( ij> +m? (1.7)
=1 J=p+1

P 2 p+q 2\ * A +0 2 A 0 2\ k
B —Up
of = (Z&-) - ( > Bwj) = (<32 ) + <32 ) )
i=1 j=p+1
k
A% +0%
= 1.8
(42 (13)
From |) with ¢ = m =0 and k& = 1, we obtain ©p = A%p, where
AB,p:B$1+B902+"'+Bxp' (19)

The purpose of this article is finding the solution to the equation

t
Q%,mu(x) = Z Cr <>rB,m 6
r=0
by using B-convolutions of the generalized function, where p+¢ = n, r € Rf = {z : = =
(x1,...,2pn), 21 > 0,...,2, > 0}, ¢, is a constant, ¢ is the Dirac-delta distribution, and o%mé =9.

The following is the main result of this paper, a proof of which is given in

Theorem 1.1. Consider the linear differential equation

t
My w(®) =D ¢ O, 6, (1.10)

r=0
where p+q =mn, x € R ={x: 2 = (z1,...,2,),21 > 0,...,2, > 0}, ¢, is a constant, § is

the Dirac-delta distribution, and 0%7,”6 = ¢ . Then the type of solution to 1) depends on the
relationship between k and t, according to the following cases:

(1) If t < k and t = 0, then (1.10]) has the solution
u(z) = Wap(w,m) * co ((—1)*Sup(x) * Rar(w)  (C**(x))" )
which is the elementary solution of the operator <>’j§7m n Propositz'on is an ordinary function

when 2k > n + |v| and 4k > n + |v| and is a temper distribution when 2k < n + |v| and
4k < n+|v|.
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(2) Ift <k andt=m =0, then has the solution
u(x) = co ((—1)3k56k(33) * R () * (C*k(a:))*_l)

which is the elementary solution of the operator 69’73, is an ordinary function when 6k > n + |v|
and is a temper distribution when 6k < n + |v].

(3) If 0 < t < k then the solution of (1.10) s

2) = 3 Wy (,m) 5 e (=125 Sy () % Ry () 5 (CF7 ()) )
r=1

which is an ordinary function when 2k — 2r > n + |v| and 4k — 4r > n + |v| and is a tempered
distribution when 2k — 2r < n + |v| and 4k — 4r < n+ |v|.

(4) Ift > k and k <t < M, then (1.10) has the solution

ZCT’OBm

which is only a singular distribution.

2 Preliminaries

Denoted by TY the generalized shift operator acting according to the law [6]

T) = C;‘/ . / @ (\/33% +y? — 2x1y1 cos by, .. ., \/ZL’% +y2 — anyncosﬁn>
0 0
x (T, sin® =) doy ... b,

where z,y € Rf, C* =TI, FE(U)ZH We remark that this shift operator is closely connected with

the Bessel differential operator [6].

din_I_ 20 dU d2U +2ld£
de?2 'z dr  dy? | oy dy

U(z,0) = f(x),
Uy(x,0) = 0.
The convolution operator determined by 7Y is as follow:
(F20)= [ F@)T2o() (T92) dy. (2.1)
R

n

Convolution ([2.1)) is known as a B-convolution. We note the following properties for the B-convolution
and the generalized shift operator:

(a) TV -1=1.

(b) T - f(x) = f().

(c) If f( ),g9(x) € C(R}), g(x) is a bounded function, > 0 and
| l@) () de < o,

then

g Ter@ato) (Measi )y = [ ) To(a) (™)

n
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(d) From (c), we have the following equality for g(z) =1

)

/RI Tf{f(x)( 1%2”1) dy:/m fy )(H" 1%2%) dy

(e) (fxg)(z)= (g f)(x).

Lemma 2.1. If Obu(z) =6 forz € Ty = {z €R} 121 > 0,29 >0...,2, > 0and V > 0}, where
0% is the Bessel-ultra hyperbolic operator iterated k-times . Then u(x) = Rox(x) is the elementary
solution of the operator 0%, where

p p+q K
i=1

J=p+1

. (M)
Rok(2) el ($%+x§+---+x§_$§+1—x§+2_"'_xIQJH) 2 (2.2)
T) = = |
() = TR Kal2h)
for
d
an Ll (2+2k—n—2|v|) T (1—%) ['(2k)
K, (2k) = : 2

T (2+2k72p72|v|> I (p—22k)

Lemma 2.2. Given the equation A]]; u(z) =4 forz € R
iterated k-times. Then u(x) = (—1)*¥Sox(z) is the elementary solution of the operator A]];, where

where AI]; 1s the Laplace Bessel operator

n’

AB_ (ZBM—'_ Igzq Bwj) )

Jj=p+1
s |x|2k—n—2|v\ 53
k() = W7 ptqg=mn, (2.3)
and )
e, 2vi=aT (v; + ) T(k
wn (2k) = —— (vi+3) T (2.4)

on-+2|v|—4k] (W) '
2

Lemma 2.3. The convolution Roy(x)*(—1)*Sox (1) is the elementary solution for the Bessel diamond
operator o% iterated k-times and is defined by (1.5)

Lemma 2.4. Ryi(x) and Sox(z) are homogeneous distributions of order (2k —n — 2|v]).

We need to show that Rop(z) and (—1)*Sy(z) satisfy the Euler equation; that is,
(2k —n — 2|v|) Rox(x Z Tig R2k

and . 5
(2k —n — 2|v|) Sox(z) = Zmi@xi

=1

().

Lemma 2.5. (The B-convolution of tempered distribution). Roy(x)* Sox(x) exists and is a tempered
distribution.
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Proof. For the proofs of Lemma Lemma 2.5 see ([7], p.378-383). O

Lemma 2.6. (The B-convolution of Ro(x) and Sai(x)). Let Ry (x) and Sor(x) defined by (2.2) and
(2.3) respectively, then we obtain:

(1) So(x) * Som(x) = Sokrom(x), where k and m are nonnegative integers.
(2) Ro(x) * Rop(x) = Rogrom(x), where k and m are nonnegative integers.

Lemma 2.7. The function R_ox(z) and (—1)kS_ox(z) are the inverses in the B-convolution algebra
of Rox(x) and (—1)kSa(x), respectively. That is,

R_gk(z) x Rop(x) = R_gkr2r(7) = Ro(z) = 0,
(—1)]65’,2]6(.%) * (—1)k52k($) = S,QkJer(l’) = So(l’) = (5

Proof. For the proofs of Lemma [2.6{and Lemma see [10]. O
Definition 2.8. Let = (z1,22,...,%,) be a point of R, the function W, (z,m) is defined by
- _a/2 2\r a/24r
Wa(x,m) = Z r (m?)"(=1) Setor() * Royar(), (2.5)
r=0

where « is a complex parameter, m is a nonnegative real number, R, o,(z) and S,42.(z) are defined
23

by (2.2) and ({2.3) respectively.
From the definition of W, (x, m) and by putting a = —2k, we have
- k T - T
Woap(z,m) =) <r>(m2) (=) "y ey () Ry ().
r=0

Since the operator (op-+m?)* defined in equation (1.7) is a linearly continuous and has 1—1 mapping,
then it has inverse. From Lemma 2.3] we obtain

W_gp(z,m) = i <_k> (m2)" o5 6

r=0 r
= (op +m?)ko. (2.6)
By putting £ = 0 in (2.6) , we have Wy(z,m) = 0. By putting o = 2k into (2.5)), we have
—k
Wap(z,m) = ( 0 ><m2)0(_1)k+052k+0(x) * Rojro(2)
> (—k
+2 ( r >(m2)r(_1>k+TS2k+2r($) * Ropyor(2). (2.7)
r=1
The second summand of the right-hand member of ([2.7)) vanishes for m = 0 and then, we have
War(z,m = 0) = (—=1)*Sox(2) * Rop () (2.8)

which is the elementary solution of the Bessel diamond operator.
Lemma 2.9. [13] Given the equation
(op +m?*)Fu(z) =6

for v € R} and (o5 +m?2)* is the diamond Bessel Klein Gordon operator iterated k-times defined by

(1.7), we obtain
u(z) = Waog(x, m)

is the elementary solution or Green function of the operator (o +m?)* and Way(x,m) is defined by
(2.5) with o = 2k. The function Wai(x, m) has the following properties Wo(xz,m) = § and

(o5 +m*) Wo(x,m) = Wa_op(x,m).
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Lemma 2.10. [71] Given the equation

k
ok G(x) = (W) G(z) =10 (2.9)

for x € RY, where @% is the operator iterated k-times is defined by (1.8) . Then we obtain G(x) is

n’

the elementary solution of (2.9), where
G(z) = (Ra(w) % (1) Sap () % (C** ()~
where

Clz) = 234(93) + ;(—1)254(33).

Here C*%(x) denotes the convolution of C(z) itself k-times, (C**(x))*~! denotes the inverse of C**(x)
in the convolution algebra. Moreover G(z) is a tempered distribution.

3 Main Results

Proposition 3.1. Given the equation
Og,m ’LL(.ZL') = 57 (31)
where O%’m is the operator iterated k-times defined by 1 , 0 is the Dirac-delta distribution, r € R}
and k is a nonnegative integer. Then we obtain
_ 2%k sk )T
u(x) = Wog(z,m) (R4k(x) x (—1) S4k(x)> * (C’ (ac)) (3.2)
is the elementary solution for the operator 0%7771. In particular, for m =0 then 1) becomes

oh u(r) =0, (3.3)

we obtain
u(w) = Rep(x) * (—1)*Sex () * (C** ()"~
is the elementary solution of the equation (3.3)), for ¢ = m =0 then (3.1) becomes

Bu(@) =10, (3.4)

we obtain

u(z) = Sgi(x)

is the elementary solution of 1) where Agjp is the Laplace Bessel operator of p-dimension, iterated
4k-times which is defined by (1.9)

Proof. From (1.6 and (3.1]), we have

(o +m?)F <A%'2FD%> u(z) = 6. (3.5)

*—1
B-convolving both sides of 1) by Wop (2, m) * (R4k(l’) * (—1)2k54k(96)) * (C*k(x)) , We obtain

A2+ 0%\ "
19_;13) u(x)

(ng(x, m) * (R4k(x) % (—1)%% Sy () * (C*k(x))*_l)) x (op +m?)k (

= Won(,m)  (Rax(e) * (~1)%Su(a)) = (€)' 6.
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By properties of B-convolutions

k
(o + m?) W (a,m) + (%*DB) (Runlw) # (<17 Suela) * (€ @))  u(a)

= Wap(e,m) * (Ru(a) * (~1)*Si(2)) * (CF(2))
By Lemma 2.9 and Lemma [2.10] we obtain,
5 6 u(r) = u(x) = War(w,m) * (Ran(w) * (1) Sax(w) # (CF(2))"") (3.6)
is the elementary solution of operator <>'f97m. In particular, for m = 0 then becomes
oy gu(x) = Dlyu(z) = 6.
by Lemma , equations and we obtain
u(@) = (Ran(x) % (1) Sue(w) * (CF (@) ) % Wag(x, 0)
= (R4k(l‘) x (—1)* Sy () * (C*k(l’))*fl) * ((—1)"Sax(x) * Rog())
= (Rer(w) * (—1)*Sg(x)) * (CF(2))* !
is the elementary solution of the operator &%, for ¢ = m = 0 then becomes
A u(@) =3, (3.7)

where A4ka is the Laplace Bessel operator of p-dimension iterated 4k-times. By Lemma [2.2] we have

u(w) = (=1)"Ssi(x) = Ss(2)
is the elementary solution of . O
Proposition 3.2. For 0 <r < k,
o’ém (ng(m, m) x (—1)2k84k(w) * Ryp(x) * (C*k(w))*_1>
= Wagery(2,m) 5 (=125 835y (@) % Ragury ()  (C*F7) (2))1)
and for k <t,

O (Wan(w,m) # (—1)* Sux(w) # Rag(x)  (CF(@))™) = o5 k0.

Proof. For 0 < r < k, by Proposition (3.1
B m (Wzk(x, m) * (1) Sy (x) * Rap(z) * (C’*k(x))**l) = 0.

Thus,
i (Wak(,m) 5 (—1/Su(2) # Ran() 5 (C™H(2) 1) = 6

or

0%;25 * OB m (WZk(L m) * (—1)** Sy () * Rax(z) * (C*k<l‘>)*_l) = 4.

B- convolving both sides by Way,—)(z, m) * (=1)2F=18, 5 (2) % Rygp—py () * (C*E) ()71, we
obtain

0%7; <W2(k—r) (x,m) * (—I)Q(k_r)54(k_r) (x) * Ry(re—r) (x) * (C*(k_r) (x))*_l)
* OB m (ng(x, m) (—1)2’“S4k(x) * Ryp(x) * (C*k(x))*_l)
= Wag—py (2, m) % (=1)2F S,y (@) * Rygp—ry(@) * (C*F)(2))* L %4,
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By Proposition [3.1
8 4 O (Wan(,m) + (1) 84 (x) * Rax(w) # (C**(x))"?)
= Wok—r) (z,m) * (—1)2(k7r)54(k—r) () * Ry(k—r () * (C*(kfr)(xw*fl-
It follows that
B.m (ng(l’, m) (—1)2kS4k(m) * Ry (x) * (C*k(x))*_l)
= Wagg—r (z,m) % (=1)2F Sy () % Ryg—py () % (C*F) ()7
as required. For k£ <'t,
O (Wak(,m) # (=1)* Sug(x)  Ra() % (C*F () )
= 059_,];1 <>Ifgm (ng(m,m) s (—1)% Sy () * Ryp(z) * (C’*k(x))**l)
= ol hé
by Proposition [3.1, That completes the proofs. O

We now come to the proof of our main result.

3.1 Proof of Theorem [I.1]
(1) For t = 0, we have <>’f37mu(x) = ¢ , and by Proposition [3.1| we obtain
u(w) = War(z,m) # co ((—=1)*Sup(w) * Rag(x) # (C**(2))"7).

Now, War(x,m) ,(—=1)?*Sy(z) and Ry(z) are the analytic functions for 2k > n + |v| and
4k > n + |v| and also Wor (2, m) * (—1)% Sy (x) * Ryp(z) * (C**(2))*~! exits and is an analytic
function by . It follows that Wog(z,m) * (—1)2* Sy (x) * Ryx () * (C*F(2))*~! is an ordinary
function for 2k > n + |v| and 4k > n + |v|. By Lemma Waor(z,m) , (=1)2*Syx(x) and
Ry (x) are tempered distributions with 2k < n + |v| and 4k < n + |v|, we obtain Way(x, m) *
(—1)%#Syp () * Ryp() % (C**(z))*~! exits and is a tempered distribution.

(2) For t = m = 0, we have o gu(z) = ®u(r) = ¢ , and by Proposition ﬂ, Lemma and
equation (2.8]) we obtain
u(w) = Wak(x,0) % co ((=1)* Sar ()  Ra() * (C*F () )
= co ((=1)** Ser(x) * Re() + (C*F(2)) ).
Now, (—1)3*Ser. () and Rg () are the analytic functions for 6k > n+|v| and also (—1)3*Sg(z) *
Rer () * (C*F(2))*~! exits and is an analytic function by (3.2). It follows that (—1)3*Se(z) *
Rex(x) * (C**(z))*~! is an ordinary function for 6k > n + |v|. By Lemma (—1)3%Ser, ()

and Rgy(z) are tempered distributions with 6k < n + |v|, we obtain (—1)%*Se(z) * Rer(z) *
(C*F(x))*~! exits and is a tempered distribution.

(3) For the case 0 < t < k, we have

k 2 ¢
OB m(T) =c10Bm 6+ 20, 0+ + ¢ op,, 0.
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We convolved both sides of the above equation by Way (2, m)*(—1)% Sy (2)* Ryp () (C*F(2))*1
to obtain

O Wan(r,m)  ((—1)*Su (@) * Ra () # (C* (1)) x u(a)

= c10pm (War(w,m) * (—1) Sy () # Ra() = (C*(2))" ")
+ c9 <>237m (ng(aj, m) * (—1)2]“S4k(:p) * Ryp(x) * (C*k(ac))*_l)
+oFo <>§57m (ng(x, m) x (—1)2 Sy () * Ryp(z) * (C*k(x))*_l) :

By Proposition [3.2] we obtain

u(r) = c1 (WQ(kfl)(mv m) * (_1)2(16_1)54(1@71)(35) * Ryg—1y(w) * (C*(k_l)(x))*_l)
+ e (W2(k—2) (w,m) * (—1)2(#2)54@—2) (7) * Rygr—o) () * (C*k=2) (m))*fl)
+ it (W2(k—t) (x,m) * (—1)2(k_t)54(k_t) (x) * Ry(r—) (x) % (C’*(k_t) (:C))*_1> )

or

t

u(@) = 3 ¢ (Wageon (2, m) # (~ 125840y (1) # Rageo (@) # (C°E (@)1

r=1

Similarly, as in the case (1), u(x) is an ordinary function for 2k—2r > n+|v| and 4k—4r > n+|v|
and is a tempered distribution for 2k — 2r < n + |v| and 4k — 4r < n + |v|.

(4) For the case t > k and k <t < M, we have

k N k+1 M
OB mU(T) = i O 1y 6 + Chy1 05, 6+ -+ ear OB, 0

B-convolved both sides of the above equation by Wa (2, m) % (—1)% Syp(2) % Ryp(2) % (C*F(2))*1
to obtain

Oy (Wak(a, m) # (—1)* Sup ()  Ra(w) % (C*F (@)™ % u(w)

= i Oy (W, m) * (1) Su(w) * Rag(x)  (C*(z))* )
+ck+1<>lfgm(W2k(x m) % (=1)2 Sy (x) * Rax(w)  (CM(x))" )
et O (Wan(,m)  (—1)* Sux(w) # Rag(w) + (C*F () ).

By Proposition [3.2] again, we obtain
w(x) = ckd + Crt1 0Bm 0 + Cry2 OQB’m O+ +cy <>B —k§ = Z c <>Bm

Since o, %6 is a singular distribution, hence u(x) is only the singular distribution. That com-
pletes the proof.
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