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On a partial differential equation
related to the diamond Bessel Klein-Gordon
operator
Sudprathai Bupasiri and Krailikhit Latpala

Abstract

In this paper, we consider the equation

♦k
B,mu(x) =

t∑
r=0

cr♦r
B,mδ

where ♦k
B,m is the operator iterated k-times and is defined by

♦k
B,m =

(( p∑
i=1

Bxi

)2

+ m2

2

)2

−

((
p+q∑

j=p+1

Bxj

)2

− m2

2

)2k

,

where p + q = n, x = (x1, . . . , xn) ∈ R+
n , Bxi = ∂2

∂x2
i

+ 2vi
xi

∂
∂xi

, vi = 2αi + 1, αi > − 1
2 [6], xi > 0, i = 1, 2, . . . , n, cr is a

constant, k is a nonnegative integer, δ is the Dirac-delta distribution, ♦0
B,mδ = δ and n is the dimension of R+

n . It is shown
that, depending on the relationship between k and t, the solution to this equation can be ordinary functions, tempered
distributions, or singular distributions.
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1 Introduction

Kananthai [1] has studied the partial differential operator �k and is named as the diamond operator
iterated k-times, which is defined by

�k =

( p∑
i=1

∂2

∂x2
i

)2

−

 p+q∑
j=p+1

∂2

∂x2
j

2

k

, p+ q = n (1.1)

where n is the dimension of the space Rn, for x = (x1, x2, . . . , xn) ∈ Rn and k is a non-negative
integer. The operator �k can be expressed in the form �k = �k4k = 4k�k, where the operator 4k

is the Laplace operator and which is defined by

4k =
(
∂2

∂x2
1

+ ∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)k
(1.2)
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and the operator �k is the ultra-hyperbolic operator and which is defined by

�k =
(
∂2

∂x2
1

+ ∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1
− ∂2

∂x2
p+2
− · · · − ∂2

∂x2
p+q

)k
(1.3)

Satsanit [12] has showed that( p∑
r=1

∂2

∂x2
r

)2

+

 p+q∑
j=p+1

∂2

∂x2
j

2

k

=
((4+�

2

)2
+
(4−�

2

)2)k
=
(
42 +�2

2

)k
(1.4)

Satsanit [13] has studied the diamond Bessel Klein - Gordon operator related to linear differential
equation of the form (♦B + m2)ku(x) = δ, we obtain u(x) = W2k(x,m) is the elementary solution
of the diamond Bessel Klein - Gordon operator, δ is the Dirac - delta distribution. Lunnaree and
Nonlaopon [4] have introduced the operator (♦+m2)k, that is named as the diamond Klein-Gordon
operator, which is defined by

(♦+m2)k =

( p∑
r=1

∂2

∂x2
r

)2

−

 p+q∑
j=p+1

∂2

∂x2
j

2

+m2


k

,

where p + q = n is the dimension of the space Rn, for x = (x1, x2, . . . , xn) ∈ Rn,m is a nonnegative
real number and k is a nonnegative integer, see [2, 3, 8, 9] for more details. Later, Yildirim, Sarikaya
and Ozturk [7] have studied the Bessel diamond operator, which is defined by

�kB =

( p∑
i=1

Bxi

)2

−

 p+q∑
j=p+1

Bxj

2

k

(1.5)

=

 p∑
i=1

Bxi −
p+q∑
j=p+1

Bxj

k  p∑
i=1

Bxi +
p+q∑
j=p+1

Bxj

k .
Yildirim, Sarikaya and Ozturk have showed that the function u(x) = (−1)kS2k(x) ∗ R2k(x) is the
unique elementary solution for the operator �kB, where ∗ indicates convolution, R2k(x) and S2k(x)
are defined by (2.2) and (2.3) respectively, that is,

�kB
(
(−1)kS2k(x) ∗R2k(x)

)
= δ,

x ∈ R+
n = {x : x = (x1, . . . , xn), x1 > 0, . . . , xn > 0}. For k = 1 the operator �B can be expressed in

the form �B =
a
B �B = �B

a
B where �B is the Bessel ultra-hyperbolic operator,

�B = Bx1 +Bx2 + · · ·+Bxp −Bxp+1 −Bxp+2 − · · · −Bxp+q

where p+ q = n and 4B is the Laplace Bessel operator,
a
B = Bx1 +Bx2 + · · ·+Bxp +Bxp+1 +Bxp+2 + · · ·+Bxp+q

Bupasiri [11] has introduced the elementary solution of the n-dimensional ⊕kB operator and showed
that the solution of the convolution form (−1)3kS6k(x) ∗R6k(x) ∗ (C∗k(x))∗−1 is a unique elementary
solution of the equation ⊕kBu(x) = δ, where

⊕kB =

( p∑
i=1

Bxi

)4

−

 p+q∑
j=p+1

Bxj

4

k

.

We consider the equation

�kB,mu(x) =
t∑

r=0
cr �rB,m δ
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where �kB,m is the operator and which is defined by

�kB,m =


( p∑

i=1
Bxi

)2

+ m2

2

2

−


 p+q∑
j=p+1

Bxj

2

− m2

2


2

k

=

( p∑
i=1

Bxi

)2

−

 p+q∑
j=p+1

Bxj

2

+m2


k ( p∑

i=1
Bxi

)2

+

 p+q∑
j=p+1

Bxj

2

k

= (�B +m2)k}kB (1.6)

where

(�B +m2)k =

( p∑
i=1

Bxi

)2

−

 p+q∑
j=p+1

Bxj

2

+m2


k

(1.7)

}kB =

( p∑
i=1

Bxi

)2

+

 p+q∑
j=p+1

Bxj

2

k

=

(a
B +�B

2

)2

+
(a

B −�B
2

)2
k

=
(a2

B +�2
B

2

)k
(1.8)

From (1.6) with q = m = 0 and k = 1, we obtain ⊕B =
a4
B,p, where

a
B,p = Bx1 +Bx2 + · · ·+Bxp . (1.9)

The purpose of this article is finding the solution to the equation

�kB,mu(x) =
t∑

r=0
cr �rB,m δ

by using B-convolutions of the generalized function, where p + q = n, x ∈ R+
n = {x : x =

(x1, . . . , xn), x1 > 0, . . . , xn > 0}, cr is a constant, δ is the Dirac-delta distribution, and �0B,mδ = δ.

The following is the main result of this paper, a proof of which is given in §3.1.
Theorem 1.1. Consider the linear differential equation

�kB,m u(x) =
t∑

r=0
cr �rB,m δ, (1.10)

where p + q = n, x ∈ R+
n = {x : x = (x1, . . . , xn), x1 > 0, . . . , xn > 0}, cr is a constant, δ is

the Dirac-delta distribution, and �0B,mδ = δ . Then the type of solution to (1.10) depends on the
relationship between k and t, according to the following cases:

(1) If t < k and t = 0, then (1.10) has the solution

u(x) = W2k(x,m) ∗ c0
(
(−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
which is the elementary solution of the operator �kB,m in Proposition 3.1, is an ordinary function
when 2k ≥ n + |v| and 4k ≥ n + |v| and is a temper distribution when 2k < n + |v| and
4k < n+ |v|.
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(2) If t < k and t = m = 0, then (1.10) has the solution

u(x) = c0
(
(−1)3kS6k(x) ∗R6k(x) ∗ (C∗k(x))∗−1

)
which is the elementary solution of the operator ⊕kB, is an ordinary function when 6k ≥ n+ |v|
and is a temper distribution when 6k < n+ |v|.

(3) If 0 < t < k then the solution of (1.10) is

u(x) =
t∑

r=1
W2(k−r)(x,m) ∗ cr

(
(−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1

)
which is an ordinary function when 2k − 2r ≥ n + |v| and 4k − 4r ≥ n + |v| and is a tempered
distribution when 2k − 2r < n+ |v| and 4k − 4r < n+ |v|.

(4) If t ≥ k and k ≤ t ≤M , then (1.10) has the solution

u(x) =
M∑
r=k

cr �r−kB,m δ

which is only a singular distribution.

2 Preliminaries

Denoted by T yx the generalized shift operator acting according to the law [6]

T yxϕ(x) = C∗v

∫ π

0
. . .
∫ π

0
ϕ

(√
x2

1 + y2
1 − 2x1y1 cos θ1, . . . ,

√
x2
n + y2

n − 2xnyn cos θn
)

×
(
Πn
i=1 sin2vi−1

)
dθ1 . . . dθn,

where x, y ∈ R+
n , C

∗
v = Πn

i=1
Γ(vi+1)

Γ( 1
2 )Γ(vi)

. We remark that this shift operator is closely connected with
the Bessel differential operator [6].

d2U

dx2 + 2v
x

dU

dx
= d2U

dy2 + 2v
y

dU

dy

U(x, 0) = f(x),
Uy(x, 0) = 0.

The convolution operator determined by T yx is as follow:

(f ∗ ϕ) =
∫
R+

n

f(y)T yxϕ(x)
(
Πn
i=1y

2vi
i

)
dy. (2.1)

Convolution (2.1) is known as aB-convolution. We note the following properties for theB-convolution
and the generalized shift operator:

(a) T yx · 1 = 1.

(b) T 0
x · f(x) = f(x).

(c) If f(x), g(x) ∈ C(R+
n ), g(x) is a bounded function, x > 0 and∫ ∞

0
|f(x)|

(
Πn
i=1x

2vi
i

)
dx <∞,

then ∫
R+

n

T yx f(x)g(y)
(
Πn
i=1y

2vi
i

)
dy =

∫
R+

n

f(y)T yx g(x)
(
Πn
i=1y

2vi
i

)
dy.
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(d) From (c), we have the following equality for g(x) = 1,∫
R+

n

T yx f(x)
(
Πn
i=1y

2vi
i

)
dy =

∫
R+

n

f(y)
(
Πn
i=1y

2vi
i

)
dy

(e) (f ∗ g)(x) = (g ∗ f)(x).

Lemma 2.1. If �kBu(x) = δ for x ∈ Γ+ = {x ∈ R+
n : x1 > 0, x2 > 0 . . . , xn > 0 and V > 0}, where

�kB is the Bessel-ultra hyperbolic operator iterated k-times . Then u(x) = R2k(x) is the elementary
solution of the operator �kB, where

�kB =

 p∑
i=1

Bxi −
p+q∑
j=p+1

Bxj

k , p+ q = n

R2k(x) = V
2k−n−|v|

2

Kn(2k) =

(
x2

1 + x2
2 + · · ·+ x2

p − x2
p+1 − x2

p+2 − · · · − x2
p+q

)( 2k−n−|v|
2 )

Kn(2k) (2.2)

for
V = x2

1 + x2
2 + · · ·+ x2

p − x2
p+1 − x2

p+2 − · · · − x2
p+q

and

Kn(2k) =
π

n+2|v|−1
2 Γ

(
2+2k−n−2|v|

2

)
Γ
(

1−2k
2

)
Γ(2k)

Γ
(

2+2k−p−2|v|
2

)
Γ
(
p−2k

2

) .

Lemma 2.2. Given the equation
ak
B u(x) = δ for x ∈ R+

n , where
ak
B is the Laplace Bessel operator

iterated k-times. Then u(x) = (−1)kS2k(x) is the elementary solution of the operator
ak
B, where

ak
B =

 p∑
i=1

Bxi +
p+q∑
j=p+1

Bxj

k ,

S2k(x) = |x|
2k−n−2|v|

wn(2k) , p+ q = n, (2.3)

and

wn(2k) =
Πn
i=12vi− 1

2 Γ
(
vi + 1

2

)
Γ(k)

2n+2|v|−4kΓ
(
n+2|v|−2k

2

) . (2.4)

Lemma 2.3. The convolution R2k(x)∗(−1)kS2k(x) is the elementary solution for the Bessel diamond
operator �kB iterated k-times and is defined by (1.5).
Lemma 2.4. R2k(x) and S2k(x) are homogeneous distributions of order (2k − n− 2|v|).

We need to show that R2k(x) and (−1)kS2k(x) satisfy the Euler equation; that is,

(2k − n− 2|v|)R2k(x) =
n∑
i=1

xi
∂

∂xi
R2k(x)

and
(2k − n− 2|v|)S2k(x) =

n∑
i=1

xi
∂

∂xi
S2k(x).

Lemma 2.5. (The B-convolution of tempered distribution). R2k(x)∗S2k(x) exists and is a tempered
distribution.
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Proof. For the proofs of Lemma 2.1- Lemma 2.5, see ([7], p.378-383).
Lemma 2.6. (The B-convolution of R2k(x) and S2k(x)). Let R2k(x) and S2k(x) defined by (2.2) and
(2.3) respectively, then we obtain:

(1) S2k(x) ∗ S2m(x) = S2k+2m(x), where k and m are nonnegative integers.
(2) R2k(x) ∗R2m(x) = R2k+2m(x), where k and m are nonnegative integers.
Lemma 2.7. The function R−2k(x) and (−1)kS−2k(x) are the inverses in the B-convolution algebra
of R2k(x) and (−1)kS2k(x), respectively. That is,

R−2k(x) ∗R2k(x) = R−2k+2k(x) = R0(x) = δ,

(−1)kS−2k(x) ∗ (−1)kS2k(x) = S−2k+2k(x) = S0(x) = δ

Proof. For the proofs of Lemma 2.6 and Lemma 2.7, see [10].
Definition 2.8. Let x = (x1, x2, . . . , xn) be a point of R+

n , the function Wα(x,m) is defined by

Wα(x,m) =
∞∑
r=0

(
−α/2
r

)
(m2)r(−1)α/2+rSα+2r(x) ∗Rα+2r(x), (2.5)

where α is a complex parameter, m is a nonnegative real number, Rα+2r(x) and Sα+2r(x) are defined
by (2.2) and (2.3) respectively.

From the definition of Wα(x,m) and by putting α = −2k, we have

W−2k(x,m) =
∞∑
r=0

(
k

r

)
(m2)r(−1)−k+rS2(−k+r)(x) ∗R2(−k+r)(x).

Since the operator (�B+m2)k defined in equation (1.7) is a linearly continuous and has 1−1 mapping,
then it has inverse. From Lemma 2.3 we obtain

W−2k(x,m) =
∞∑
r=0

(
−k
r

)
(m2)r �−k−rB δ

= (�B +m2)kδ. (2.6)

By putting k = 0 in (2.6) , we have W0(x,m) = δ. By putting α = 2k into (2.5), we have

W2k(x,m) =
(
−k
0

)
(m2)0(−1)k+0S2k+0(x) ∗R2k+0(x)

+
∞∑
r=1

(
−k
r

)
(m2)r(−1)k+rS2k+2r(x) ∗R2k+2r(x). (2.7)

The second summand of the right-hand member of (2.7) vanishes for m = 0 and then, we have

W2k(x,m = 0) = (−1)kS2k(x) ∗R2k(x) (2.8)
which is the elementary solution of the Bessel diamond operator.
Lemma 2.9. [13] Given the equation

(�B +m2)ku(x) = δ

for x ∈ R+
n and (�B +m2)k is the diamond Bessel Klein Gordon operator iterated k-times defined by

(1.7), we obtain
u(x) = W2k(x,m)

is the elementary solution or Green function of the operator (�B +m2)k and W2k(x,m) is defined by
(2.5) with α = 2k. The function W2k(x,m) has the following properties W0(x,m) = δ and

(�B +m2)kWα(x,m) = Wα−2k(x,m).
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Lemma 2.10. [11] Given the equation

}kB G(x) =
(
42
B +�2

B

2

)k
G(x) = δ (2.9)

for x ∈ R+
n , where }kB is the operator iterated k-times is defined by (1.8) . Then we obtain G(x) is

the elementary solution of (2.9), where

G(x) = (R4k(x) ∗ (−1)2kS4k(x)) ∗ (C∗k(x))∗−1

where
C(x) = 1

2R4(x) + 1
2(−1)2S4(x).

Here C∗k(x) denotes the convolution of C(x) itself k-times, (C∗k(x))∗−1 denotes the inverse of C∗k(x)
in the convolution algebra. Moreover G(x) is a tempered distribution.

3 Main Results

Proposition 3.1. Given the equation

�kB,m u(x) = δ, (3.1)

where �kB,m is the operator iterated k-times defined by (1.6) , δ is the Dirac-delta distribution, x ∈ R+
n

and k is a nonnegative integer. Then we obtain

u(x) = W2k(x,m) ∗
(
R4k(x) ∗ (−1)2kS4k(x)

)
∗
(
C∗k(x)

)∗−1
(3.2)

is the elementary solution for the operator �kB,m. In particular, for m = 0 then (3.1) becomes

⊕kB u(x) = δ, (3.3)

we obtain
u(x) = R6k(x) ∗ (−1)3kS6k(x) ∗ (C∗k(x))∗−1

is the elementary solution of the equation (3.3), for q = m = 0 then (3.1) becomes
a4k
B,pu(x) = δ, (3.4)

we obtain
u(x) = S8k(x)

is the elementary solution of (3.4), where
a4k
B,p is the Laplace Bessel operator of p-dimension, iterated

4k-times which is defined by (1.9).

Proof. From (1.6) and (3.1), we have

(�B +m2)k
(
42
B +�2

B

2

)k
u(x) = δ. (3.5)

B-convolving both sides of (3.5) by W2k(x,m) ∗
(
R4k(x) ∗ (−1)2kS4k(x)

)
∗
(
C∗k(x)

)∗−1
, we obtain

(
W2k(x,m) ∗

(
R4k(x) ∗ (−1)2kS4k(x) ∗ (C∗k(x))∗−1

))
∗ (�B +m2)k

(
42
B +�2

B

2

)k
u(x)

= W2k(x,m) ∗
(
R4k(x) ∗ (−1)2kS4k(x)

)
∗
(
C∗k(x)

)∗−1
δ.
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By properties of B-convolutions

(�B +m2)kW2k(x,m) ∗
(
42
B +�2

B

2

)k (
R4k(x) ∗ (−1)2kS4k(x) ∗ (C∗k(x))∗−1

)
∗ u(x)

= W2k(x,m) ∗
(
R4k(x) ∗ (−1)2kS4k(x)

)
∗
(
C∗k(x)

)∗−1
.

By Lemma 2.9 and Lemma 2.10, we obtain,

δ ∗ δ ∗ u(x) = u(x) = W2k(x,m) ∗
(
R4k(x) ∗ (−1)2kS4k(x) ∗ (C∗k(x))∗−1

)
(3.6)

is the elementary solution of operator �kB,m. In particular, for m = 0 then (3.1) becomes

�kB,0u(x) = ⊕kBu(x) = δ,

by Lemma 2.6, equations (2.8) and (3.6) we obtain

u(x) =
(
R4k(x) ∗ (−1)2kS4k(x) ∗ (C∗k(x))∗−1

)
∗W2k(x, 0)

=
(
R4k(x) ∗ (−1)2kS4k(x) ∗ (C∗k(x))∗−1

)
∗ ((−1)kS2k(x) ∗R2k(x))

=
(
R6k(x) ∗ (−1)3kS6k(x)

)
∗ (C∗k(x))∗−1

is the elementary solution of the operator ⊕kB, for q = m = 0 then (3.1) becomes
a4k
B,pu(x) = δ, (3.7)

where
a4k
B,p is the Laplace Bessel operator of p-dimension iterated 4k-times. By Lemma 2.2, we have

u(x) = (−1)4kS8k(x) = S8k(x)
is the elementary solution of (3.7).
Proposition 3.2. For 0 < r < k,

�kB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= W2(k−r)(x,m) ∗

(
(−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1

)
and for k ≤ t,

�tB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= �t−kB,mδ.

Proof. For 0 < r < k, by Proposition 3.1,

�kB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= δ.

Thus,
�k−rB,m �

r
B,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= δ

or
�k−rB,mδ ∗ �

r
B,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= δ.

B- convolving both sides by W2(k−r)(x,m) ∗ (−1)2(k−r)S4(k−r)(x) ∗ R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1, we
obtain

�k−rB,m

(
W2(k−r)(x,m) ∗ (−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1

)
∗ �rB,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= W2(k−r)(x,m) ∗ (−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1 ∗ δ.



3 Main Results 66

By Proposition 3.1,

δ ∗ �rB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= W2(k−r)(x,m) ∗ (−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1.

It follows that

�rB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= W2(k−r)(x,m) ∗ (−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1

as required. For k ≤ t,

�tB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= �t−kB,m �

k
B,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= �t−kB,mδ

by Proposition 3.1. That completes the proofs.

We now come to the proof of our main result.

3.1 Proof of Theorem 1.1

(1) For t = 0, we have �kB,mu(x) = c0δ , and by Proposition 3.1 we obtain

u(x) = W2k(x,m) ∗ c0
(
(−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
.

Now, W2k(x,m) ,(−1)2kS4k(x) and R4k(x) are the analytic functions for 2k ≥ n + |v| and
4k ≥ n + |v| and also W2k(x,m) ∗ (−1)2kS4k(x) ∗ R4k(x) ∗ (C∗k(x))∗−1 exits and is an analytic
function by (3.2). It follows that W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1 is an ordinary
function for 2k ≥ n + |v| and 4k ≥ n + |v|. By Lemma 2.5, W2k(x,m) , (−1)2kS4k(x) and
R4k(x) are tempered distributions with 2k < n + |v| and 4k < n + |v|, we obtain W2k(x,m) ∗
(−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1 exits and is a tempered distribution.

(2) For t = m = 0, we have �kB,0u(x) = ⊕kBu(x) = c0δ , and by Proposition 3.1, Lemma 2.6 and
equation (2.8) we obtain

u(x) = W2k(x, 0) ∗ c0
(
(−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
= c0

(
(−1)3kS6k(x) ∗R6k(x) ∗ (C∗k(x))∗−1

)
.

Now, (−1)3kS6k(x) and R6k(x) are the analytic functions for 6k ≥ n+|v| and also (−1)3kS6k(x)∗
R6k(x) ∗ (C∗k(x))∗−1 exits and is an analytic function by (3.2). It follows that (−1)3kS6k(x) ∗
R6k(x) ∗ (C∗k(x))∗−1 is an ordinary function for 6k ≥ n + |v|. By Lemma 2.5, (−1)3kS6k(x)
and R6k(x) are tempered distributions with 6k < n + |v|, we obtain (−1)3kS6k(x) ∗ R6k(x) ∗
(C∗k(x))∗−1 exits and is a tempered distribution.

(3) For the case 0 < t < k, we have

�kB,mu(x) = c1 �B,m δ + c2 �2B,m δ + · · ·+ ct �tB,m δ.
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We convolved both sides of the above equation byW2k(x,m)∗(−1)2kS4k(x)∗R4k(x)∗(C∗k(x))∗−1

to obtain

�kB,mW2k(x,m) ∗
(
(−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
∗ u(x)

= c1 �B,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
+ c2 �2B,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
+ · · ·+ ct �tB,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
.

By Proposition 3.2, we obtain

u(x) = c1
(
W2(k−1)(x,m) ∗ (−1)2(k−1)S4(k−1)(x) ∗R4(k−1)(x) ∗ (C∗(k−1)(x))∗−1

)
+ c2

(
W2(k−2)(x,m) ∗ (−1)2(k−2)S4(k−2)(x) ∗R4(k−2)(x) ∗ (C∗(k−2)(x))∗−1

)
+ · · ·+ ct

(
W2(k−t)(x,m) ∗ (−1)2(k−t)S4(k−t)(x) ∗R4(k−t)(x) ∗ (C∗(k−t)(x))∗−1

)
.

or

u(x) =
t∑

r=1
cr
(
W2(k−r)(x,m) ∗ (−1)2(k−r)S4(k−r)(x) ∗R4(k−r)(x) ∗ (C∗(k−r)(x))∗−1

)
.

Similarly, as in the case (1), u(x) is an ordinary function for 2k−2r ≥ n+|v| and 4k−4r ≥ n+|v|
and is a tempered distribution for 2k − 2r < n+ |v| and 4k − 4r < n+ |v|.

(4) For the case t ≥ k and k ≤ t ≤M , we have

�kB,mu(x) = ck �kB,m δ + ck+1 �k+1
B,m δ + · · ·+ cM �MB,m δ.

B-convolved both sides of the above equation byW2k(x,m)∗(−1)2kS4k(x)∗R4k(x)∗(C∗k(x))∗−1

to obtain

�kB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
∗ u(x)

= ck �kB,m
(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
+ ck+1 �k+1

B,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
+ · · ·+ cM �MB,m

(
W2k(x,m) ∗ (−1)2kS4k(x) ∗R4k(x) ∗ (C∗k(x))∗−1

)
.

By Proposition 3.2 again, we obtain

u(x) = ckδ + ck+1 �B,m δ + ck+2 �2B,m δ + · · ·+ cM �M−kB,m δ =
M∑
r=k

cr �r−kB,m δ.

Since �r−kB,mδ is a singular distribution, hence u(x) is only the singular distribution. That com-
pletes the proof.

References

[1] A. Kananthai, On the solutions of the n-dimensional diamond operator, Appl. Math. Comput.
88 (1997), 27–37.

[2] A. Liangprom, K. Nonlaopon, On the convolution equation related to the Klein-Gordon
operator, International Journal of Pure and Applied Mathematics 71 (2011), 67–82.

[3] A. Liangprom, K. Nonlaopon, On the convolution equation related to the diamond Klein-
Gordon operator, Abstract and Applied Analysis 2011 (2011), 1–14.



3 Main Results 68

[4] A. Lunnaree, K. Nonlaopon, On the Fourier transform of the diamond Klein - Gordon
kernel, International Journal of Pure and Applied Mathematics 68 (2011), 85–97.

[5] A.H. Zemanian, Distribution and Transform Analysis, McGraw-Hill, New York, 1965.
[6] B.M. Levitan, Expansion in Fourier series and integrals with Bessel functions, Uspeki Mat.

Nauka (N.S.) 6(42)(1951), 102–143.
[7] H. Yildirim, M.Z. Sarikaya, S. Ozturk, The solutions of the n-dimensional Bessel dia-

mond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci.
(Math.Sci.), 114(4), (2004), 375–387.

[8] K. Nonlaopon, On the inverse ultra-hyperbolic Klein-Gordon kernel, Mathematics 7 (2019),
534.

[9] K. Nonlaopon, On the solution of the n-dimensional diamond Klein-Gordon operator and its
convolution, Far East Journal of Mathematical Sciences, 63(2012), 203–220.

[10] M.Z. Sarikaya, H. Yildirim, On the B-convolutions of the Bessel diamond kernel of Riesz,
Appl. Math. Comput. 208(2009), 18–22.

[11] S. Bupasiri, On the solution of the n-dimensional ⊕kB operator, Applied Mathematical Sciences
9(10)(2015), 469–479.

[12] W. Satsanit, Green function and Fourier transform for o-plus operator, Electronic J. of Diff.
Eq. 2010(2010), 1–14.

[13] W. Satsanit, On the diamond Bessel Klein Gordon operator related to linear differential equa-
tion, Journal of non linear science and applications 12 (2019), 552–561.

Sudprathai Bupasiri and Krailikhit Latpala

Sakon Nakhon Rajabhat University,
Sakon Nakhon 47000, Thailand.

E-mail address: sudprathai@gmail.com
Krailikhit@snru.ac.th


	Introduction
	Preliminaries
	Main Results
	Proof of Theorem 1.1


