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Abstract

Let G be a finite subgroup of SL(V') and let V' be a 3-dimensional
vector space over a finite field F of positive characteristic p, which
divides |G|. We denote by S(V) the symmetric algebra and by
S(V) the subring of G-invariants. Let T(G) be the transvec-
tions group. In this paper, we classify the Gorenstein rings of the
form S(V)¢, where V is a decomposable G-module of the form
V = Fv®W with Fv and W being G-submodules with dimyp W = 2.
There are several cases for T(G) and W, so for each of them we
provide a sufficient and necessary condition (G as above) to ensure
the Gorenstein property of S(V)€.
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1 Introduction

The Gorenstein rings play an important part, as Noethe-
rian rings do, in commutative algebra and algebraic ge-
ometry. The study of the relationship between injective
dimension, global dimension of rings and modules, and
homological algebra has occupied most of the studies
on Gorenstein rings [4].

Let G C SL(V) be a finite subgroup of SL(V'). Let
F be a field with characteristic char F = p > 0 dividing
|G| (the order of G), V' a 3-dimensional F-vector space
and S(V') the symmetric algebra of V. We denote by

S(V)¥ the subring of G-invariants. In this paper, we
consider V| a decomposable G-module of the form

V=FvoW

where Fv, W are G-submodules with dimyp W = 2. Our
aim is to give conditions for when S(V)¢ is Gorenstein
(Definitions in §2)).

Eagon and Hochster proved in [6] that if G € GL(V')
is a finite group, then S(V)¢ is Cohen Macaulay ring
for all nonmodular groups, i.e., when |G| is prime to
p, but S(V)% often fails to be Cohen-Macaulay in the
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modular case, i.e., when p divides |G|. A special exam-
ple is given in [8, Theorem 1.2]: if F is a field of posi-
tive characteristic p, V' is a faithful representation of a
non-trivial p-group P, and mV denotes the faithful rep-
resentation of GG formed by taking the direct sum of m
copies of V', then S(mV)¥ is not Cohen-Macaulay when
m > 3. It is known however that if G C GL(V'), and
dimp V = 3, then S(V)¢ is always a Cohen-Macaulay
ring, even in the modular case [I1, Proposition 5.6.10].
This fact makes the 3-dimensional case special since
the Cohen-Macaulay property is a necessary condition
to be Gorenstein.

Recall that ¢ € GL(V) is a pseudo-reflection if ¢ has
a finite order and rank(g — I) = 1, where I denotes the
unit matrix. A pseudo-reflection is called a transvection
if it is not diagonalizable. Hence, if G C SL(V'), then
all the pseudo-reflections are transvections. We denote
by T'(G) the G-subgroup generated by all transvections
in G and by W(G) the G-subgroup generated by all
pseudo-reflections in G. Given a basis {vy, ..., v, } of V,
and g € G, then g(v;) = i1 aiv5, a5 € F where the
matrix A := (a;j), representing g, acts on coordinates
(=row vectors) from the right. Consequently, if we fix
a basis {v,w;,wy} for V such that W = Fw; + Fws,
then for every g € G, since V = Fv & W, the matrix
representation of g with respect to this basis has the
following form:

)\1(9) 0 0
9= ( 0 Xa(g) As(g) ) ,
0 Mlg) Xs(g)

where \;(g) € F for 1 <1 < 5. This matrix acts on the

basis {v, wy,ws} as follows:
g<v) = )‘l(g>va
g(w1) = Aa(g)wr + A3(g)ws, and
glwz) = Aa(g)wr + As(g)ws

Our characterization of the Gorenstein property of
S(V)% will proceed in steps subdivided into 3 cases:

1. W is an irreducible and primitive 7'(G)-module.
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2. W is a reducible T'(G)-module.
3. W is an irreducible and imprimitive 7'(G)-module.

In our main Proposition [3.1], we provide a sufficient and
necessary condition for GG as above to ensure the Goren-
stein property of S(V)%. By means of this condition, we
handle each of the three cases above, and provide new
conditions on S(V)% to be Gorenstein. In other words,
we translate separately the meaning of the condition
stated in Proposition [3.1| when we focus on each case.
This is presented in Propositions [3.2] and

which are the new results of this paper.
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2 Preliminaries

If R is a commutative Noetherian ring and M is a
finitely generated R-module, an element a € R is requ-
lar for M provided that 0 # M # aM and if am = 0
for m € M then m = 0 (i.e., a is not a divisor on M).
A sequence x1,...,x, € R is a reqular sequence for M
if each z; is regular for M/(x1 M + ... + ;-1 M). The
depth of M is the length of the longest regular sequence
for M. One defines the ring R or the module M to be
Cohen-Macaulay if its depth is equal to its Krull di-
mension.

Recall that an ideal I in a commutative ring is called
irreducible if whenever I = I'NI" for ideals I, I, then
either I = I’ or I = I". If R is Noetherian, a param-
eter ideal for R is an ideal generated by a system of
parameters for R. A commutative Noetherian ring R
is called Gorenstein if it is Cohen-Macaulay and ev-
ery parameter ideal is irreducible. As for regular rings,
the Gorenstein rings can be characterized in terms of
homological algebra [4].

We start with the following useful result of Fleis-
chmann - Woodcock and A. Braun.

Theorem 2.1. (A.Braun [9], Fleischmann- Woodcock [7])
Suppose that S(V)¢ is Cohen-Macaulay and S(V)W (&)
is a polynomial ring. Then S(V)% is Gorenstein if and
only if G/W(G) C SL(m/m?), where m is the unique
homogenous mazimal ideal of S(V)W(@) and W(G) is
the G — subgroup generated by all pseudo-reflections (of
all types).
The next two results are useful.

Lemma 2.2. Suppose that G C SL(V).
faithful G-module.

Then W is a

Proof. Let 1¢ # g € G , with g|W = Id. Then

Ag) 00
g=| 0 10,
0 0 1

€ G. Since G C SL(V) ,
g %), a contradiction. [

where g(v) = A(g)v , for all g
A(g) = 1 and therefore g = (é

The next result does not require the assumption V' =
Fo e W.

Lemma 2.3. Suppose that G C SL(V) and U a 1-
dimensional G — submodule. Then U C ker(o — I) for
all transvections o in G. Equivalently, T(G) acts triv-
tally on U.

Proof. Let 0 € T(G) be a transvection, o # I, and
M = ker(oc — I). Suppose that Fu = U ¢ M. Then
with respect to a basis {u,my,mao}, mi,me € M, we

have:
AMo) 0 0
o= 0O 1 0],
0 0 1

where o(u) = A(o)u and o|M = Id. But G C SL(V),
therefore A(o) = 1, implying that ¢ = I, a contradic-
tion. O

3 Main Results

Our first Proposition provides a sufficient and necessary
condition for GG, with the assumptions in to ensure
the Gorenstein property of S(V)¢.

Proposition 3.1. Let G C SL(V) be a finite group and
V =Fv®W a decomposition of V into G — submodules
with dimpW = 2. Then the following are equivalent:

1. S(V)% is Gorenstein.

2. det(g™') = det(g™'™"), for each g € G, where m is
the unique homogenous mazximal ideal of S(W)T(G),

and g", gm/m2 are the restrictions of g on W and
m/m? respectively.

Proof. By Lemma ST = s T[], Now
by [10], SW)T&) = Fla;,as] is a polynomial ring,
where m = (aj,az). Let P be the unique homoge-
nous maximal ideal of S(V)T(@) then P = (ay,as,v).
By Theorem 2.1 S(V)¢ is Gorenstein if and only if

1= det(g"/"") = Ag)det(g™™),

where g(v) = A(g)v, for all g € G. Since G C SL(V),
det(g™) = Ag)~", hence S(V)C is Gorenstein if and
only if det(g") = det(¢™/™"), for each g € G. O

Now we handle each of the three cases that we men-
tioned in the introduction, and translate the previous

condition of Proposition to other conditions sepa-
rately.
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Case 1: W is an irreducible and primitive
T(G)-module

Denote by Ty (G) = T(G)|W the restriction of T'(G) on
W. The transvection groups Ty (G) have been classified
by Kantor whenever Ty (G) is an irreducible primitive
linear group, see [9, Theorem 1.5] and [12]. So with the
above notation one of the following holds:

(i) Tw(G) = SL(2,F,), where p|q (p divides q).

(i) Tw(G) = SL(2,Fs), Ty (G) C SL(2,Fy) and Fy C
F.

We now consider the above item (i).

Proposition 3.2. Suppose G C SL(V') is a finite group
with Tw(G) = SL(2,F,), where ¢ = p°* and F, C
F. Then S(V)Y is Gorenstein if and only if Gy C
GL(2,F,), where Gy is the restriction of G on W.

Proof. Recall from [I, Theorem 8.2.1] that
S(W)T(G) _ S(W)SL(QIF a)

where u = zy? — ya?, deg(u) =
2 2
xy? —yad

= Flu, ca1),

g+ 1 and ¢y =
, deg(ca1) = ¢* — q. Let g € G and set
gV = (‘CL 3) the restriction of g on W with respect to
the basis {z,y} of W. So (¢ )W = W(fc _ab>~

Since T'(G) is a normal subgroup of G, we get after
restriction on IV that

(@01 = det(lgw) (e8) (3 (%)
1 (ad—bc—ac a? )

—c? ad—bc+ac
is in SL(2,F,). Similarly,
(a")(19) "

_ 1 (ad betbd  —b?
d@t(g ) d? ad—bc—bd

) = ad — bc. Then

) € SL(2,F,).

Set e = det(g"

—————— F,.
e'e e e ee € ¥
(<)
c e
Assume firstly that a # 0. Then v ;= — = <aec) e F,.
a _
d_ (%)
Ifb;é()then,u::g:(%)

e = ad — bc = aby — bay = ab(pu — )

and therefore

d b
aswellasé':f:M—:uﬁqu.Ifb:Othentake
a a

d
B =0andé := a—Q = % € [F,. So in both cases
a

b=al,c=ay,d= aj, Whecll"e B,7,0 € F,. Therefore
o () (38 e (4), v - (14) <
GL(2,F,).

If @ = 0 then e = det(g") = —bc implies b # 0 # c.
So we get equality ¢" = (0 C) (0 s ) with ¢ replacing
a and 3,6 € Fy. Recall from [I1], Ex.1, P. 104] that co;

is a Dickson invariant of SL(V)“H(2Fa)  Consequently
if a # 0 we get

9" (ca1) = (alw)(h(c21)) = a® eay.
Ifal=a,b?=b,c! =c,d? = d, we get
g"Vw) = g"(@)g" )" —g" (y)g" ()

= (ax + by)(cx + dy)? — (cx + dy)(ax + by)?
(ad — be)(zy? — ya?) = det(g" )u.

Q\&

Let M = Fu + Fcoy be the 2—dimensional subspace of
the polynomial ring S(W)T(@) = Flu, co1], m = (u, c21),
so m/m? = M. Then the matrix representing g, the
restriction of g on M, with respect to the basis {u, o1}
(det(ogw) S . ) Therefore since a? = a, the condition

of Proposition : det(gV) = det(g™'™") = det(gM)

is equivalent to:

is

det(¢") = det(gw)aqkq = aq271det(gw).

Hence it is equivalent to a1 = 1, namely a € Fg.
Using h € GL(2,F,), this is also equivalent to g" =
( a4 g) € GL(2,F,). A similar conclusion is obtained if
a=0. O

We next consider the above item (ii).

Proposition 3.3. Suppose G C SL(3,F) is a finite
group with Tyw(G) = SL(2,F5), Tw(G) C SL(2,Fy)
and Fg C F. Then S(V)Y is Gorenstein if and only
if Gw C< Tw(G),nlw >, where n is a 20" -primitive
root of unity.

Proof. Recall from [9] that

S(W)SLEF) = F(f10, f1a],

where
9 9
fio = wjT2 — 1173,
12 10,2 10 12
fiz = 2+ 2%3 — 2825 + 22210 — 212

Let ¢ € G, choose £ € F such that §2t{et(gw) = 1.
Hence ¢V := &Iy gV € SL(2,F) where F is the alge-
braic closure of F. It is proved in [3, Proposition 3.7]
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that the normalizer of Ty (G) in SL(2,F) is Tw(G).
This is true for any field F, C F' and in particular for
F. Now §" normalizes Ty (G) since g and &Iy are
such. Also §" € SL(2,F), so §" € Tw(G). Hence

(§8) =3" (47" € (Tw(G)(Gw) = Cw.
Consequently Gy C (TW(G),(gg)\n € ). Since

(gg)gw = gV € Tw(G) = SL(2,F5), we get that
3" (f10) = fi0 and ¢V (f12) = fi2, which implies that

V(fio) = €0 fio and g% (fi2) = € fi2. Let U =
F f10 4+ F f12 be the 2—dimensional subspace of the poly-

nomial ring S(W)SL2Fs) = F|f10, fia], m = (fo, f12),
som/m? = U. Then g, the matrix representing the re-
striction of g on U with respect to the basis { f10, fi2} is

(57010 5_012). Therefore, by Proposition , det(g") =
det(g™'™*) = det(gV) is translated into €2 = 22 or
€29 = 1. Therefore S(V)% is Gorenstein if and only if

Gw C (Tw(G),nIw), where n € F is a primitive 20"
root of unity:. O

Case 2: W is a reducible T(G)-module

We now consider case 2, namely the possibility of W
being a reducible T'(G)-module.

Proposition 3.4. Let G C SL(3,F) be a finite group.
Assume that W is a reducible T(G)-submodule. Then

S(V)C is Gorenstein if and only if
Gw C {(8 fl)lc#’n*1 =1,a,e,d € F},

where p is the characteristic of F and

Tw(G) = (o1) X -+ X (o).

Proof. Let gV = ( ) € Gw C GL(2,W), and set

W= ¢lwg"

with det(§") = €2det(g"") = 1. Since W is a reducible
Tw (G)-module, there exists a basis {1, z2} in which

Tw(G) C (](F) %) The computations of A.Braun in [3|

Theorem 3.1, p. 244-245] with gV = (EZ g;) show that

&c =0, hence ¢ = 0 and g (%121)7Wh61‘67TEF,

and §m™/m* = <(5‘l8 d). We have by [3, Theorem 3.1,
p. 244] that Ty (G) = (o1) X -+ X (0y,) is elementary
abelian group, where o; is a transvection of the form
([1) Of), fori=1,...,n, and {a, ...,
dependent over F,. Here m = (b, ) is the maximal

homogenous ideal of S(W)T(@), where b is defined in
[3, Theorem 3.1, p 245] as an invariant of degree p".

(“ 6), and det(¢"') = ad. Hence

ap b are linearly in-

Recall now that ¢g"'
we have the following:

gV (b) = (€a)?"b = €V a?"D

g"V(b) = (€ Iw)g" (b) = PP " b = aP"b

9% (2) = (&d)(2)

9" (x2) = (€ w§" ) (w2) = (7' €d)ay = das
Therefore ¢"/ m — (agn 3). Consequently

det(g™™) = a”"d = a”" " (ad) = o”" det(g").

Hence, by Proposition S(V)¢ is Gorenstein if and
only if a?"~! = 1. In other words S(V)% is Gorenstein

if and only if Gw C {(§ )" ' = 1L,becF}. O

Case 3: W is an irreducible and imprimitive
T(G)-module

It is known that in this case, Ty (G) is a monomial
subgroup (see [13]). Recall that H C GL(W) is called
monomial if W has a basis with respect to which the
matrix of each element of H has exactly one non-zero
entry in each row and column. If charF # 2, then
by [3, Lemma 3.9.] Ty (G) = 1. This contradicts the
assumption that W is an irreducible Ty (G)—module.
Hence we only deal with p = 2.

Proposition 3.5. Assume thatp = 2. Let G C SL(3,F)
be a finite group with Ty (G) acting imprimitively and
irreducibly on the submodule W. Then S(V)% is Goren-
stein if and only if Gy C< Tw(G),dIw >, where 0 is
a primitive d — th root of unity and d is defined in the
proof.

Proof. Let {x1,x2} be a basis of W. Let {g1,...,g,} be
the set of transvections generating Ty (G). Since W is
an irreducible 7'(G)-module, n > 2. Since g; is a mono-
mial, then either g; = (82) or (83), fori=1,...,n
The first possibility leads, as in [3, Lemma 3.9.] to

0
gi = Iw. So g; = 71%

spect to the basis {1, xg} of W. Let n; be the minimal
number such that (g;g;)™@ = 1, where i # j, clearly

gz-_1 = g; for i = 1,...,n. Also n;; = nj > 1, and since
char F = 2, n;; is odd. Recall that S(W)T(E) is a poly-
nomial ring [10, Theorem 2.4]. We next compute the
actual generators of S(W)7(),

Let ((Tip (G)), (Tw(G))] = {gigs0ig) be the com-
mutator subgroup of Ty (G). We have (g1g2)™* = 1.

Therefore go = (g192)"2g2 = (9192)"2 *(9192)92 =
(g192)™271g;. But since njo is odd, nis — 1 is even.
Hence

92 = (91929192) g€ [Tw(G), Tw (G)]g1
This similarly holds for g;,7 > 3, hence

(Tw (G))]
[((Tw (@), Tw (G)])]

for i = 1,...,n, with re-

=2
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Let d = lem{n;;|i < j}. Since

o aiaj_loziaj_l 0
9i959i95 = 0 a;lajaflozj )
it follows that [(Tyw (G)), (Tw (G))] = {(§ % )I¢? = 1}.
Since (aza; )™ = 1 it follows that o;” = "', Conse-
quently of := 3 for i = {1,2,3,..,n}.

Now we have:
L gi(z + ofag) = gi(z1)? + afgs(x2)?
= adad + o (o ay)d = 2 + adaf.
2. gi(z172) = gi(21)gi(72) = e - a "y = w179,

Hence {129, 2§ + B4} € S(W)T() and

deg(r122) deg(zf + f24) = 2d = [Ty (G)].
So by [5, Theorem 3.7.5] we get that

S(W)TD) = Flzy29, 2] + fy)

is a polynomial ring. Let ¢"V = (’; S) and set gV =

¢y g™, where €2det(g") = 1. Now the computations
of A. Braun in the proof of [3, Proposition 3.10], with

gV € SL(2,F) show that §" € Ty (G). Therefore we
have:

(i) 9" (z122) = (551 591)§W(9€1$2) = ¢y,
(i) g% (@d + Bag) = (4, (20 )a" (29 + Bag)
= (5, ) (@f + pad) = €4 at + ).

Consequently, ¢g"™/™ = (’552 ggd), where

m/m? = U = F(x123) + F(z{ 4 Bxg).

So
det(g™'™") = €726~ = det(g"V )¢,

and det(g") = det(¢™/™") if and only if €4 = 1. Con-
sequently, by Proposition S(V)% is Gorenstein if
and only if Gy C (Tw(G), 01w ) where ¢ is a primitive
d — th root of unity.

O

Corollary 3.6. Suppose G C SL(3,F,), andV = F,u®
W a decomposition of V = IF;’, into G-submodules. Then

S(V)% is Gorenstein.

Proof. This is a consequence of Proposition [3.2] Propo-
sition [3.3] Proposition [3.4 and Proposition O
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