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1 Introduction

Fail-safe systems have been commonly adopted in many day-to-day applications of reliability struc-
tures. A fail-safe is specifically a design feature that, when a failure occurs, will respond in a way
that no harm happens to the system itself. The brake system on a railway train is a good example of
a fail-safe system in which the brakes are held in off-position by air pressure and if a brake line splits
or a carriage becomes de-coupled, the air pressure will be lost and the brakes get applied by a local
air reservoir. Another example of a fail-safe system is an elevator in which brakes are held off brake
pads by tension and if the tension gets lost, the brakes latch on the rails in the shaft thus preventing
the elevator from falling. There are many other fail-safe systems in common use, of course.

A k-out-of-n system, with n components, would work iff at least k components work; it includes
parallel, fail-safe and series systems all as special cases with k = 1, k = n−1 and k = n, respectively. If
X1, · · · , Xn denote the lifetimes of components of a system and X1:n ≤ · · · ≤ Xn:n the corresponding
order statistics, then Xn−k+1:n is evidently the lifetime of the k-out-of-n system. Hence, the theory of
order statistics becomes essential for studying (n− k + 1)-out-of-n systems. For detailed discussions
on order statistics and their applications, interested readers may refer to the handbooks on order
statistics by Balakrishnan and Rao (1998a,b).

Balakrishnan et al. (2015) established necessary and sufficient conditions for comparing two fail-
safe systems with independent homogeneous exponential components, in the sense of mean residual
life, dispersive, hazard rate and likelihood ratio orders. Their results specifically show how one can
compare an (n−1)-out-of-n system consisting of heterogeneous components with exponential lifetimes
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with any (m− 1)-out-of-m system consisting of homogeneous components with exponential lifetimes.
In a similar vein, Zhang et al. (2018) presented sufficient (and necessary) conditions on lifetimes of
components and their survival probabilities from random shocks for comparing the lifetimes of two
fail-safe systems by means of usual stochastic, hazard rate and likelihood ratio orders.

In this work, we consider fail-safe systems in which the components are dependent with their
joint distribution being an Archimedean copula. We then compare the lifetimes of two such fail-safe
systems in this general setting in terms of usual, hazard rate and likelihood ratio orderings.

The rest of this paper proceeds as follows. In Section 2, we first briefly review some basic concepts
and notions that are used in the subsequent sections. In Section 3, we discuss the usual stochastic
order of fail-safe systems with dependent components. The hazard rate order of these systems is then
discussed in Section 4. In Section 5, the lifetimes of two fail-safe systems are compared by means of
the likelihood ratio order. Finally, some concluding remarks are made in Section 6. Some examples
are presented through out to illustrate all the results established in this work.

2 Preliminaries

We briefly introduce in this section some known concepts about stochastic orders, majorization and
copulas. Throughout the discussion here, we shall use ‘increasing’ to mean ‘non-decreasing’, and
similarly ‘decreasing’ to mean ‘non-increasing’.

2.1 Stochastic Orders

Suppose X and Y are two non-negative random variables with density functions fX and fY , distri-
bution functions FX and FY , survival functions F̄X = 1 − FX and F̄Y = 1 − FY , and hazard rates
rX = fX/F̄X and rY = fY /F̄Y , respectively.
Definition 2.1. Let X and Y be two non-negative continuous random variables. Then, X is said to
be smaller than Y in the

(i) usual stochastic order (denoted by X ≤st Y ) if F̄X(x) ≤ F̄Y (x) for all x ∈ R+, which is
equivalent to saying that E(ϕ(X)) ≤ E(ϕ(Y )) for all increasing functions ϕ : R → R, when the
involved expectations exist;

(ii) hazard rate order (denoted by X ≤hr Y ) if F̄Y (x)/F̄X(x) is increasing in x ∈ R+. In fact,
X ≤hr Y if and only if rY (x) ≤ rX(x) for all x ∈ R+;

(iii) likelihood ratio order (denoted by X ≤lr Y ) if fY (x)/fX(x) is increasing in x ∈ R+.

The implications
X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y

are well-known in the literature. One may refer to Müller and Stoyan (2002) and Shaked and
Shanthikumar (2007) for extensive discussions on various stochastic orderings, their properties and
applications.

2.2 Majorization Order

Definition 2.2. Let a = (a1, · · · , an) and b = (b1, · · · , bn) be two vectors with increasing arrange-
ments a(1) ≤ · · · ≤ a(n) and b(1) ≤ · · · ≤ b(n), respectively. Then:

(i) Vector a is said to be majorized by vector b (denoted by a
m
⪯ b) if ∑i

j=1 a(j) ≥
∑i
j=1 b(j) for

i = 1, · · · , n− 1, and ∑n
j=1 a(j) = ∑n

j=1 b(j);

(ii) Vector a is said to be weakly supermajorized by vector b (denoted by a
w
⪯ b) if ∑i

j=1 a(j) ≥∑i
j=1 b(j) for i = 1, · · · , n.
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Definition 2.3. A real-valued function ϕ, defined on a set A ⊆ Rn, is said to be Schur-convex
(Schur-concave) on A if a

m
⪯ b implies ϕ(a) ≤ (≥)ϕ(b) for any a,b ∈ A.

One may refer to Marshall et al. (2011) for an elaborate discussion on majorization and Schur
functions. The necessary and sufficient conditions for the characterization of Schur-convex and Schur-
concave functions are presented in the following lemma, as presented in Marshall et al. (2011, p.
84).
Lemma 2.4. Suppose J ⊂ R is an open interval and ϕ : Jn → R is continuously differentiable.
Then, necessary and sufficient conditions for ϕ to be Schur-convex (Schur-concave) on Jn are

(i) ϕ is symmetric on Jn;

(ii) for all i ̸= j and all z ∈ Jn,

(zi − zj)
(
∂ϕ(z)
∂zi

− ∂ϕ(z)
∂zj

)
≥ 0 (≤ 0),

where ∂ϕ(z)/∂zi denotes the partial derivative of ϕ with respect to its i-th argument.

The following lemma, taken from Marshall et al. (2011, p. 87), presents some conditions for the
characterization of vector functions preserving weak supermajorization order.

Lemma 2.5. Consider the real-valued function φ, defined on a set A ⊆ Rn. Then, a
w
⪰ b implies

φ(a) ≥ φ(b) if and only if φ is decreasing and Schur-convex on A.

2.3 Archimedean Copula

Numerous stochastic comparisons between univariate random variables have been defined and dis-
cussed in many different contexts, as can be seen in the books of Müller and Stoyan (2002) and
Shaked and Shanthikumar (2007). Most of them are based on independence of underlying random
variables. Recently, some authors have established stochastic ordering results by considering the
random variables to be dependent with an Archimedean copula as joint distribution.

Archimedean copulas possess mathematical tractability and also have the ability to capture a
wide range of dependence. For a decreasing and continuous function ψ : [0,∞) −→ [0, 1] such that
ψ(0) = 1 and ψ(+∞) = 0 and ϕ = ψ−1 being the pseudo-inverse,

Cψ(u1, · · · , un) = ψ(ϕ(u1) + · · · + ϕ(un)) for all ui ∈ [0, 1], i = 1, · · · , n,

is said to be an Archimedean copula with generator ψ if (−1)kψ[k](x) ≥ 0 for k = 0, · · · , n− 2, and
(−1)n−2ψ[n−2](x) is decreasing and convex. Here, ψ[k](x) denotes the k-th derivative of the function
ψ(x). This copula family includes many well-known copulas such as independence (product) copula,
Clayton copula, Gumbel-Hougaard copula and Ali-Mikhail-Haq (AMH) copula.

A function f is said to be superadditive if f(x + y) ≥ f(x) + f(y) for all x and y in the domain
of f . Then, based on Lemma A.1 of Li and Fang (2015), it is known that for two n-dimensional
Archimedean copulas Cψ1(u) and Cψ2(u) with respective generators ψ1 and ψ2 and pseudo-inverses
ϕ1 and ϕ2, if ϕ2 ◦ ψ1 is supperadditive, then Cψ1(u) ≤ Cψ2(u) for all u ∈ [0, 1]n. Interested readers
may refer to Nelsen (2006) for elaborate discussion on copulas, their properties and applications.

3 Usual Stochastic Order

In this section, we establish the usual stochastic order of fail-safe systems with dependent components
having Archimedean copula as joint distribution.

For the results in this section, we consider the following general set-up. We have a fail-safe system
with n dependent components whose joint distribution is an Archimedean copula described earlier in
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Section 2.3. Moreover, the marginal survival functions of the lifetimes of the components are given
by F̄αi(x), for αi > 0, i = 1, · · · , n, where F̄ (x) is some baseline survival function. Note that this
specification of marginal distributions corresponds to proportional hazard model, denoted by PH
here, as the corresponding hazard functions are given by αirF (x), where rF (x) = f(x)

F̄ (x) is the hazard
function of the baseline distribution F (x); see, for example, Marshall and Olkin (2007).

We than have the following result for the usual stochastic ordering between the lifetimes of the
two fail-safe systems in the general set-up outlined above.
Theorem 3.1. Let Xi ∼ PH(αi) (i = 1, · · · , n) have their joint distribution as Archimedean copula
with generator ψ1 and Yi ∼ PH(βi) have their joint distribution as Archimedean copula with generator
ψ2. Further, suppose ϕ2 ◦ ψ1 is superadditive and tϕ′

1(t) is an increasing function. Then,

(β1, · · · , βn)
w
⪰ (α1, · · · , αn) =⇒ X2:n ≥st Y2:n.

Proof. The survival functions of X2:n and Y2:n are given by

F̄X2:n(x) =
n∑
l=1

ψ1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

− (n− 1) ψ1

(
n∑
k=1

ϕ1(F̄αk(x))
)
, x > 0,

F̄Y2:n(x) =
n∑
l=1

ψ2

 n∑
k=1,k ̸=l

ϕ2(F̄ βk(t))

− (n− 1) ψ2

(
n∑
k=1

ϕ2(F̄ βk(x))
)
, x > 0,

respectively. The superadditivity of ϕ2 ◦ ψ1 implies that

I(ϕ1,β) =
n∑
l=1

ψ1

 n∑
k=1,k ̸=l

ϕ1(F̄ βk(x))

− (n− 1) ψ1

(
n∑
k=1

ϕ1(F̄ βk(x))
)

≤
n∑
l=1

ψ2

 n∑
k=1,k ̸=l

ϕ2(F̄ βk(x))

− (n− 1) ψ2

(
n∑
k=1

ϕ2(F̄ βk(x))
)

= I(ϕ2,β).

So, to prove the desired result, it is sufficient to show that I(ϕ1,α) ≤ I(ϕ1,β). According to Lemma
2.5, we only need to show that I(ϕ1,α) = ∑n

l=1 ψ1
(∑n

k=1,k ̸=l ϕ1(F̄αk(x))
)
−(n−1) ψ1

(∑n
k=1 ϕ1

(
F̄αk(x)

))
is decreasing and Schur-convex in (α1, · · · , αn), for any fixed x > 0. Taking the derivative of I(ϕ1,α)
with respect to αj , we have

∂I(ϕ1,α)
∂αj

= F̄αj (x) ln
(
F̄ (x)

)
ϕ′

1(F̄αj (x))

×

 n∑
l=1,l ̸=j

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

− (n− 1) ψ′
1

(
n∑
k=1

ϕ1
(
F̄αk(x)

)) . (3.1)

Because
n∑

k=1,k ̸=l
ϕ1(F̄αk(x)) ≤

n∑
k=1

ϕ1
(
F̄αk(x)

)
and ψ′(x) is an increasing function, we have

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

 = ψ′
1

(
n∑
k=1

ϕ1
(
F̄αk(x)

))
, ∀l ∈ {1, 2, . . . , n}/{j}, (3.2)

which implies that

n∑
l=1,l ̸=j

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

 ≤ (n− 1) ψ′
1

(
n∑
k=1

ϕ1
(
F̄αk(x)

))
. (3.3)
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In view of (3.3), from (3.1), we have ∂I(ϕ1,α)
∂αj

≤ 0, which implies that I(ϕ1,α) is a decreasing function.
Also,

A(x) =
(
∂I(ϕ1,α)
∂αj

− ∂I(ϕ1,α)
∂αi

)

= F̄αj (x) ln
(
F̄ (x)

)
ϕ′

1(F̄αj (x))

 n∑
l=1,l ̸=j

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

− (n− 1) ψ′
1

(
n∑
k=1

ϕ1
(
F̄αk(x)

))
−F̄αi(x) ln

(
F̄ (x)

)
ϕ′

1(F̄αi(x))

 n∑
l=1,l ̸=i

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

− (n− 1) ψ′
1

(
n∑
k=1

ϕ1
(
F̄αk(x)

)) .
If αi > (<)αj , since ϕ′(x) ≤ 0 and ψ′′(x) ≥ 0, we get

n∑
l=1,l ̸=j

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

 ≤ (≥)
n∑

l=1,l ̸=i
ψ′

1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

 .
Therefore, we have

A(x) ≤ (≥) ln
(
F̄ (x)

)F̄αj (x)ϕ′
1(F̄αj (x)) − F̄αi(x)ϕ′

1(F̄αi(x))


×

 n∑
l=1,l ̸=i

ψ′
1

 n∑
k=1,k ̸=l

ϕ1(F̄αk(x))

− (n− 1) ψ′
1

(
n∑
k=1

ϕ1
(
F̄αk(x)

)) .
Hence, if tϕ′

1(t), for t ∈ (0, 1], is an increasing function, then A(x) ≤ (≥) 0, and consequently

(αj − αi)
(
∂I(ϕ1,α)
∂αj

− ∂I(ϕ1,α)
∂αi

)
≥ 0, ∀i ̸= j,

as required. □

Remark 3.2. It should be mentioned that the condition “ϕ2 ◦ ψ1 is superadditive ” in Theorem
3.1 is quite general and hold for many Archimedean copulas. For example, consider the Gumbel-
Hougaard copula with generator ψ(t) = e1−(1+t)θ , for θ ∈ (0,∞), and set ψ1(t) = e1−(1+t)α and
ψ2(t) = e1−(1+t)β . It can be observed that ϕ2 ◦ ψ1(t) = (1 + t)α/β−1, and differentiating it twice
with respect to t, we obtain [ϕ2 ◦ ψ1(t)]′′ = (αβ )(αβ − 1)(1 + t)α/β−1 ≥ 0 for α > β, implying the
superadditivity of ϕ2 ◦ ψ1(t). □

Remark 3.3. It may also be noted that the condition “ tϕ′
1(t) is increasing” in Theorem 3.1 is quite

general and holds for many Archimedean copulas. For example, we observe the following:

(i) If ϕ(t) = (1 − lnt)
1
β −1, we have tϕ′(t) = − 1

β (1 − lnt)
1
β

−1 is increasing in t ∈ (0, 1], for β ∈ (0, 1]

(ii) If ϕ1(t) = (−lnt)θ, θ ≥ 1, we have tϕ′
1(t) = −θ(−lnt)θ−1 to be increasing in t ∈ (0, 1];

(iii) If ϕ1(t) = t−θ−1
θ , θ > 0, we have tϕ′

1(t) = −t−θ to be increasing in t ∈ (0, 1];

(iv) If ϕ1(t) = e−t−θ − e, θ > 0, we have tϕ′
1(t) = −θt−θe−t−θ to be increasing in t ∈ (0, 1].

Suppose Xi ∼ Exp(αi) (i = 1, 2, 3) and Yi ∼ Exp(βi) (i = 1, 2, 3). Set (α1, α2, α3) = (6, 7, 9)
and (β1, β2, β3) = (3, 5, 6). It is then easy to observe that (α1, α2, α3)

w
⪯ (β1, β2, β3). Now, let us
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consider the Gumbel-Hougaard copula with parameters θ1 = 0.5 and θ2 = 0.2. Then, the survival
functions of X2:3 and Y2:3 are given by, respectively,

F̄X2:3(x) = exp
{

1 −
[
−1 + (1 + α2x)1/θ1 + (1 + α3x)1/θ1

]θ1
}

+ exp
{

1 −
[
−1 + (1 + α1x)1/θ1 + (−1 + α3x)1/θ1

]θ1
}

+ exp
{

1 −
[
−1 + (1 + α1x)1/θ1 + (1 + α2x)1/θ1

]θ1
}

− 2 exp
{

1 −
[
−2 + (1 + α1x)1/θ1 + (1 + α2x)1/θ1 + (1 + α3x)1/θ1

]θ1
}
,

F̄Y2:3(x) = exp
{

1 −
[
−1 + (1 + β2x)1/θ2 + (1 + β3x)1/θ2

]θ2
}

+ exp
{

1 −
[
−1 + (1 + β1x)1/θ2 + (−1 + β3x)1/θ2

]θ2
}

+ exp
{

1 −
[
−1 + (1 + β1x)1/θ2 + (1 + β2x)1/θ2

]θ2
}

− 2 exp
{

1 −
[
−2 + (1 + β1x)1/θ2 + (1 + β2x)1/θ2 + (1 + β3x)1/θ1

]θ2
}
.

Figure 1 plots these survival functions of X2:3 and Y2:3, from which it can be observed that F̄Y2:3(x)
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Fig. 1: Plots of survival functions of X2:3 and Y2:3.

is always below F̄Y2:3(x), for x > 0, thus validating the result of Theorem 3.1. □

Remark 3.4. It should be mentioned that the superadditivity of ϕ2 ◦ψ1 has a nice interpretation as
follows: For two n-dimensional Archimedean copulas Cψ1(u) and Cψ2(u) with respective generators
ψ1 and ψ2 and pseudo-inverses ϕ1 and ϕ2, if ϕ2 ◦ ψ1 is supperadditive, then Cψ1(u) ≤ Cψ2(u) for all
u ∈ [0, 1]n. In this case, for many sub-families of Archimedean copulas, the superadditivity of ϕ2 ◦ψ1
can be roughly interpreted as follows: Kendall’s τ of the copula with generator ψ2 is larger than that
with generator ψ1, and is therefore more positive dependent.

4 Hazard Rate Order

In this section, we establish the hazard rate order of fail-safe systems with dependent components
having Archimedean copula as joint distribution. In addition, for convenience, we use a sgn= b to
denote that both sides of an equality have the same sign.
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Theorem 4.1. Let Xi be non-negative random variables having common distribution F1 (i = 1, · · · , n),
and Yi be non-negative random variables having common distribution F2 (i = 1, · · · , n), with their
joint distributions as a common Archimedean copula with generator ψ. If

t ln′ [nψ [(n− 1)ϕ(t)] − (n− 1)ψ [nϕ(t)]]

is decreasing in t, then

X1 ≥hr X2 =⇒ X2:n ≥hr Y2:n.

Proof. The survival functions of X2:n and Y2:n are given by

F̄X2:n(x) = nψ
[
(n− 1)ϕ(F̄1(x))

]
− (n− 1) ψ

[
nϕ(F̄1(x))

]
, x > 0,

F̄Y2:n(x) = nψ
[
(n− 1)ϕ(F̄2(x))

]
− (n− 1) ψ

[
nϕ(F̄2(x))

]
, x > 0,

respectively. For obtaining the required result, it is sufficient to show that the ratio F̄X2:n(x)/F̄Y2:n(x)
is increasing in x ∈ R+. For this purpose, let us consider

∆(x) = F̄X2:n(x)
F̄Y2:n(x)

=
nψ

[
(n− 1)ϕ(F̄1(x))

]
− (n− 1) ψ

[
nϕ(F̄1(x))

]
nψ

[
(n− 1)ϕ(F̄2(x))

]
− (n− 1) ψ

[
nϕ(F̄2(x))

] .
The condition X1 ≥hr X2 implies rF1(x) ≤ rF2(x) and F̄1(x) ≥ F̄2(x), for x ∈ R+. Therefore,

∆′(x) sgn= rF2(x)F̄2(x)

n(n− 1)ϕ′(F̄2(x))
{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
nψ

[
(n− 1)ϕ(F̄2(x))

]
− (n− 1)ψ

[
nϕ(F̄2(x))

]


−rF1(x)F̄1(x)

n(n− 1)ϕ′(F̄1(x))
{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
nψ

[
(n− 1)ϕ(F̄1(x))

]
− (n− 1)ψ

[
nϕ(F̄1(x))

]


≥ rF1(x)F̄2(x)

n(n− 1)ϕ′(F̄2(x))
(
{ψ′

[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
nψ

[
(n− 1)ϕ(F̄2(x))

]
− (n− 1)ψ

[
nϕ(F̄2(x))

]


−rF1(x)F̄1(x)

n(n− 1)ϕ′(F̄1(x))
{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
nψ

[
(n− 1)ϕ(F̄1(x))

]
− (n− 1)ψ

[
nϕ(F̄1(x))

]


sgn= t ln′ [nψ [(n− 1)ϕ(t)] − (n− 1)ψ [nϕ(t)]]
∣∣∣∣
t=F̄2(x)

−t ln′ [nψ [(n− 1)ϕ(t)] − (n− 1)ψ [nϕ(t)]]
∣∣∣∣
t=F̄1(x)

≥ 0,

where the last inequality follows from the decreasing property of t ln′ [nψ [(n− 1)ϕ(t)] − (n− 1)ψ [nϕ(t)]]
with respect to t ∈ (0, 1). □

Remark 4.2. It needs to be mentioned that the condition “ t ln′ [nψ [(n− 1)ϕ(t)] − (n− 1)ψ [nϕ(t)]]
is decreasing" in Theorem 4.1 is general and holds for many Archimedean copulas. For example, we
observe the following:

(i) If ψ(t) = 1
2et−1 , for n = 2, we have

t ln′ [2ψ [ϕ(t)] − ψ [2ϕ(t)]] =
(
t4 − 4t3 + 2t+ 1

)
(t2 − 2t− 1) (t2 − t− 1)

to be increasing in t ∈ (0, 1);
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(ii) If ψ(t) = (θt+ 1)− 1
θ , θ ∈ R+, for n = 2, we have

t ln′ [2ψ [ϕ(t)] − ψ [2ϕ(t)]] =
2t− 2t−θ

(
2t−θ − 1

)− 1
θ

−1

2t− (2t−θ − 1)− 1
θ

to be decreasing in t ∈ (0, 1);

(iii) If ψ(t) = 1√
t+1 , for n = 2, we have

t ln′ [2ψ [ϕ(t)] − ψ [2ϕ(t)]] = −
√

2

 −
(√

2
(√

2 (1 − t) + t
)2
)

+ 1(√
2 (1 − t) + x

) (
2
(√

2 (1 − t) + t
)

− 1
)


to be decreasing in t ∈ (0, 1);

(iv) If ψ(t) = e−xθ , θ ∈ (0, 1], for n = 4, we have

t ln′ [4ψ [3ϕ(t)] − 3ψ [4ϕ(t)]] =
4
(
3θt3θ

)
− 3

(
4θt4θ

)
4t3θ − 3t4θ

to be decreasing in t ∈ (0, 1);

(v) If ψ(t) = e1−(1+t)θ , β ∈ [1,∞), for n = 3, we have
t ln′ [3ψ [2ϕ(t)] − 2ψ [3ϕ(t)]] =

6 (1 − ln t)
1
β

−1

(−1 + 2 (1 − ln t)
1
β

)β−1
e

(
1−
(

−1+2(1−ln t)
1
β

)β
)

−
(

−2 + 3 (1 − ln t)
1
β

)β−1
e

(
1−
(

−2+3(1−ln t)
1
β

)β
)

3e

(
1−
(

−1+2(1−ln t)
1
β

)β
)

− 2e

(
1−
(

−2+3(1−ln t)
1
β

)β
)

to be decreasing in t ∈ (0, 1)

Suppose F̄1(x) = e−4x and F̄2(x) = e−7x, for x > 0. Next, consider ψ(x) = e−xθ , n = 4 and
θ = 0.8. It is then easy to observe that F1 ≥hr F2. The ratio of the survival functions is

F̄X2:4(x)
F̄Y2:4(x)

= 4[exp(−4x)]3θ − 3[exp(−4x)]4θ

4[exp(−7x)]3θ − 3[exp(−7x)]4θ , x > 0.

As seen in Figure 2, the ratio function is monotone for x > 0, thus validating the result of
Theorem 4.1. □

5 Likelihood Ratio Order

In this section, we establish the likelihood ratio order of fail-safe systems with dependent components
having Archimedean copula as joint distribution.
Theorem 5.1. Let Xi be non-negative random variables having common distribution F1 (i = 1, · · · , n),
and Yi be non-negative random variables having common distribution F2 (i = 1, · · · , n), with their
joint distributions as a common Archimedean copula with generator ψ. If t ln′

[
ψ′[(n−1)ϕ(t)]− ψ′[nϕ(t)]

ψ′(ϕ(t))

]
is decreasing in t, then

X1 ≥hr X2 =⇒ X2:n ≥lr Y2:n.
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Fig. 2: The ratio of survival functions of X2:4 and Y2:4.

Proof. The density functions of X2:n and Y2:n are given by

fX2:n(x) = n(n− 1)f1(x)ϕ′(F̄1(x))
{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
, x > 0,

fY2:n(x) = n(n− 1)f2(x)ϕ′(F̄2(x))
{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
, x > 0,

respectively. For obtaining the desired result, it is sufficient to show that the ratio fX2:n(x)/fY2:n(x)
is increasing in x ∈ R+. For this purpose, let us consider

fX2:n(x)
fY2:n(x) =

n(n− 1)f1(x)ϕ′(F̄1(x))
{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
n(n− 1)f2(x)ϕ′(F̄2(x))

{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]} .
It is enough to show that

Φ(x) =
ϕ′(F̄1(x))

{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
ϕ′(F̄2(x))

{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
is increasing in x ∈ R+. The condition X1 ≥hr X2 implies that rF1(x) ≤ rF2(x) and F̄1(x) ≥ F̄2(x),
for x ∈ R+. So, let us now set

A = F̄2(x)
[
ϕ′′(F̄2(x))

{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
+ ϕ′2(F̄2(x))

{
(n− 1)ψ′′

[
(n− 1)ϕ(F̄2(x))

]
− nψ′′

[
nϕ(F̄2(x))

]} ]

and

B = F̄1(x)
[
ϕ′′(F̄1(x))

{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
+ ϕ′2(F̄1(x))

{
(n− 1)ψ′′

[
(n− 1)ϕ(F̄1(x))

]
− nψ′′

[
nϕ(F̄1(x))

]} ]
.
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Then, we have

Φ′(x) = rF2(x) A

ϕ′(F̄2(x))
{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
−rF1(x) B

ϕ′(F̄1(x))
{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
≥ rF1(x) A

ϕ′(F̄2(x))
{
ψ′
[
(n− 1)ϕ(F̄2(x))

]
− ψ′

[
nϕ(F̄2(x))

]}
−rF1(x) B

ϕ′(F̄1(x))
{
ψ′
[
(n− 1)ϕ(F̄1(x))

]
− ψ′

[
nϕ(F̄1(x))

]}
sgn= t ln′

[
ψ′ [(n− 1)ϕ(t)] − ψ′ [nϕ(t)]

ψ′ (ϕ(t))

] ∣∣∣∣
t=F̄2(x)

− t ln′
[
ψ′ [(n− 1)ϕ(t)] − ψ′ [nϕ(t)]

ψ′ (ϕ(t))

] ∣∣∣∣
t=F̄1(x)

≥ 0,

where the last inequality follows from the decreasing property of tln′
[
ψ′[(n−1)ϕ(t)]− ψ′[nϕ(t)]

ψ′(ϕ(t))

]
with

respect to t ∈ [0, 1]. □

Remark 5.2. The condition “t ln′
[
ψ′[(n−1)ϕ(t)]− ψ′[nϕ(t)]

ψ′(ϕ(t))

]
is decreasing" in Theorem 5.1 is general and

is satisfied for many Archimedean copulas. For example, we observe the following:

(i) If ψ(t) = (θt+ 1)− 1
θ , θ ∈ R+, for n = 2, we have

t ln′
[
ψ′ [ϕ(t)] − ψ′ [2ϕ(t)]

ψ′ (ϕ(t))

]
= − (1 + θ)tθ

(2 − tθ)
{

(2 − tθ)
1
θ

+1 − 1
}

to be decreasing in t ∈ (0, 1);
(ii) If ψ(t) = e−t, for n = 3, we have

t ln′
[
ψ′ [2ϕ(t)] − ψ′ [3ϕ(t)]

ψ′ (ϕ(t))

]
= 1 − 2t

1 − t

to be decreasing in t ∈ (0, 1);

(iii) If ψ(t) = 1√
t+1 , for n = 2, we have

t ln′
[
ψ′ [ϕ(t)] − ψ′ [2ϕ(t)]

ψ′ (ϕ(t))

]
=

2
(
1 −

√
2
)
t{√

2 (1 − t) + t
}{√

2
(√

2 (1 − t) + t
)2

− 1
}

to be decreasing in t ∈ (0, 1);

(iv) If ψ(t) = e−tθ , θ ∈ (0, 0.5] for n = 4, we have

t ln′
[
ψ′ [3ϕ(t)] − ψ′ [4ϕ(t)]

ψ′ (ϕ(t))

]
=

(
3θ−1

(
3θ − 1

)
t(3θ−1) − 4θ−1

(
4θ − 1

)
t(4θ−1))

3θ−1t(3θ−1) − 4θ−1t(4θ−1)

to be decreasing in t ∈ (0, 1).
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6 Concluding Remarks

In this paper, we have compared the lifetimes of two fail-safe systems consisting of dependent com-
ponents with joint distribution as an Archimedean copula by means of usual stochastic, hazard rate
and likelihood ratio orderings. We have also presented some numerical examples to illustrate all
the established results. It will be of natural interest to extend these results to the case of general
k-out-of-n systems. This is a challenging problem due to the complicated form of the distribution
function of the lifetime of a k-out-of-n system in the case when the components are dependent. We
are currently working on this problem and hope to report the findings in a future paper.
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