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On colimits and model structures
in various categories of manifolds
David White

Abstract

After explaining the importance of model categories in abstract homotopy theory, we provide concrete examples demon-
strating that various categories of manifolds do not have all finite colimits, and hence cannot be model categories. We then
consider various enlargements of our categories of manifolds, culminating in categories of presheaves. We explain how to
produce model structures on these enlarged categories, culminating with answering an open problem involving Poincaré
spaces.
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1 Introduction

Abstract homotopy theory applies the techniques of classical homotopy theory in other areas of
mathematics. This technique has led to Fields Medal winning work, and has resolved important
open problems in diverse fields such as algebraic geometry, homological algebra, higher category
theory, and representation theory, among others. Often, the setting for abstract homotopy theory
is that of model categories. A model category has classes of morphisms–the weak equivalences,
cofibrations, and fibrations–that satisfy certain axioms (see Definition 2.8), and allow one to mimic
the constructions of classical homotopy theory, such as CW approximation, path spaces, etc. The
homotopy theory comes into play by inverting the weak equivalences to make them isomorphisms,
which involves passing from the model category to its associated homotopy category.

Proof techniques in (abstract) homotopy theory tend to rely heavily on computation, construc-
tion, and induction, e.g., constructing some complicated object (usually via a tower of increasingly
complicated objects) and then proving inductively that we can understand what’s going on at each
step and that in the limit these steps do what is required. For example, this is how the Postnikov
tower is used, how Goodwillie calculus (also known as functor calculus) proceeds, and how the small
object argument works [Hov99, Theorem 2.1.14]. The steps of the construction often involve prod-
ucts, disjoint unions (or, more generally, coproducts), gluing objects together, and taking quotients.
Similarly, in equivariant contexts, we often need to quotient by group actions, or study fixed points
of group actions. Hence, an important axiom of a model category is that it has all limits and col-
imits. Even if one does abstract homotopy theory using ∞-categories instead of model categories,
these fundamental considerations still apply, and hence having (at least finite) limits and colimits is
essential to setting up a workable theory.

Since their introduction by Dan Quillen in 1967, researchers have continually expanded the list
of examples of model categories. Model categories can be used to study the categories of topological
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spaces, simplicial sets, chain complexes of modules over a ring (with applications to Andre-Quillen
cohomology), the stable module category from representation theory, categories of matrix factoriza-
tions, the category of categories itself (as well as groupoids and higher categories), various flavors of
(equivariant) spectra (the setting for stable homotopy theory), quasi-coherent sheaves over a scheme,
(directed) graphs, (pre)sheaves, dynamical systems (e.g., the theory of flows in computer science),
and a plethora of abelian categories that admit cotorsion pairs (leading to a powerful way to study
𝐸𝑥𝑡 and 𝑇 𝑜𝑟 functors).

Conspicuously absent from this list are the categories of smooth manifolds (required for differential
topology), Riemannian manifolds (required for differential geometry), complex analytic spaces, and
topological, symplectic, and piecewise-linear manifolds. The purpose of this paper is to explore how
one might do abstract homotopy theory in these contexts. This paper grew out of a note that the
author wrote in graduate school, and this paper is aimed at graduate students.

It is natural for students to ask whether these various categories of manifolds admit model struc-
tures. The biggest obstacle is the lack of colimits. Because these categories lack colimits, it is rare to
find a categorical approach to the study of manifolds, and hence it is difficult for students to learn
about the behavior of colimits in these categories. For this reason, after providing definitions we need
from category theory in Section 2, in Section 3, we provide examples illustrating the lack of colimits.
The differential topology literature is full of work-arounds for the failure of the category of manifold
to be closed under certain colimits (such as quotienting by group actions), so in Section 4 we explain
those work-arounds and why they are insufficient to solve the problem of lack of colimits in general.

Once we realize that any reasonable category of manifold lacks colimits, it is natural to consider
enlarged categories of manifolds such as orbifolds, diffeological spaces, and Poincaré spaces. We
consider these options in Section 5. Finally, in Section 6, we explain a general procedure for embedding
various categories of manifolds into presheaf categories, and endowing them with appropriate model
structures. This procedure is inspired by the Fields Medal winning work of Vladimir Voevodsky that
launched motivic homotopy theory as a way to use model categories to study the category of schemes
in algebraic geometry. This section culminates with a positive answer to a problem posed by John
Klein.

Acknowledgments: This paper grew out of a draft that I wrote in 2012 while a PhD student
at Wesleyan University. I am grateful to Mark Hovey for teaching me about model categories, to
Ilesanmi Adeboye’s encouragement in writing this paper and for all he taught me about manifolds
and Lie groups, to Enxin Wu for teaching me about diffeological spaces and inspiring my interest in
them, and to the referee for helpful comments. Lastly, I am grateful to John Klein for sharing the
slides of his 2019 talk in Ohio, where he stated Problem 6.5.

2 Category Theory Background

In this section, we will recall necessary terminology from [Mac71] and [Hov99].
Let 𝒞 be a category. Let 𝐽 be a small category (i.e., ob(𝐽) and mor(𝐽) are sets rather than

classes). A diagram of type 𝐽 in 𝒞 is a functor 𝐹 ∶ 𝐽 → 𝒞. We say 𝐽 is the indexing category for
the diagram. This definition means 𝐹 picks out an object of 𝒞 for each 𝑗 ∈ 𝑜𝑏(𝐽) and then assigns
𝒞-morphisms 𝐹(𝑓) for each 𝐽 -morphism 𝑓 .
Example 2.1. If 𝐽 is the category • ← • → • of three objects and two non-identity morphisms
(often called a span), then 𝐹(𝐽) consists of three objects in 𝒞 and two morphisms connecting them,
like 𝐶 ← 𝐴 → 𝐵.
Definition 2.2. A colimit of a diagram 𝐹 ∶ 𝐽 → 𝒞 is an object 𝐿 ∈ 𝒞, that:

1. admits morphisms 𝜙𝑋 ∶ 𝐹 (𝑋) → 𝐿 for each 𝑋 ∈ 𝐽 ,
2. for any 𝑓 ∶ 𝑋 → 𝑌 in 𝐽 , we have 𝜙𝑌 ∘ 𝐹(𝑓) = 𝜙𝑋, and
3. if 𝑁 is any other object in 𝒞 that satisfies the two conditions above (i.e., admits morphisms from

all elements in the diagram, commuting with the diagram’s structure morphisms) then there is
a unique morphism 𝐿 → 𝑁 making everything commute.
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The third condition above is known as a universal property. We often say that 𝐿 is the ‘closest’
object the diagram maps to. This property means that the colimit is unique up to isomorphism.
When we say ‘small colimit’ we mean an object that is the colimit of a small indexing category 𝐽 .
Note that colimits are sometimes called ‘direct limits’ or ‘inductive limits’ by algebraists. The dual
notion of the colimit of a diagram 𝐹 ∶ 𝐽 → 𝒞 is the limit, meaning an object that is universal
with respect to the property of mapping to 𝐹(𝐽). Sometimes the phrase ‘inverse limit’ is used in
place of ‘limit.’ In categories of manifolds, limits are almost always computed in the category 𝑇 𝑜𝑝 of
topological spaces, hence do not pose a problem, so we will focus on colimits. The easiest way for me
to remember the difference between colimits and limits is to remember that coproduct is a colimit
and product is a limit. The product maps to both factors, just like the limit does. The coproduct is
usually the disjoint union of the objects, and all objects map to it by inclusion. A category is called
cocomplete if it has colimits for all diagrams coming from small indexing categories 𝐽 . A category
is bicomplete if it has all small limits and colimits.
Example 2.3. We return to Example 2.1 of a span • ← • → •. Below, we display the diagram 𝐹(𝐽)
with colimit 𝐿 = 𝐵 ∐𝐴 𝐶 included, and with the universality demonstrated, looks like:

𝐴 𝑓 //

ℎ
�� ⇘

𝐵
𝑔
��

��

𝐶

//

𝑘
// 𝐵 ∐𝐴 𝐶

## 𝑁
Here the dotted arrow exists by universality because of the existence of the curved arrows. This

diagram is commutative, meaning the two paths from 𝐴 to 𝐵 ∐𝐴 𝐶 are equal (i.e., 𝑔 ∘ 𝑓 = 𝑘 ∘ ℎ), the
two from 𝐵 to 𝑁 are equal, and the two from 𝐶 to 𝑁 are equal. The object 𝐵 ∐𝐴 𝐶 is called the
pushout of 𝑓 and ℎ, and the arrow ⇘ is notation to let us know this is a pushout diagram.

Analyzing pushout diagrams is part of the bread-and-butter work of abstract homotopy theory.
In the category of topological spaces, if 𝑓 and ℎ are inclusions, then the object 𝐵 ∐𝐴 𝐶 is a copy
of 𝐵 glued together with a copy of 𝐶 along the copy of 𝐴 that sits in both. Thinking of pushouts
and colimits as gluing can be a useful point of view, and helps clarify why homotopy theorists want
to work with categories that have all colimits. If 𝐴 is the initial object, then we simply write ∐
without a subscript, and 𝐵 ∐ 𝐶 is the coproduct. In the category of topological spaces, coproduct
is disjoint union.
Example 2.4. Another important example of a colimit is a coequalizer, which is obtained from
the indexing category with two objects 0 and 1 and two non-identity morphisms from 0 to 1. A
diagram 𝐹(𝐽) in 𝒞 consists of two objects 𝐴 and 𝐵, and two arrows 𝑓, 𝑔 ∶ 𝐴 → 𝐵. The coequalizer is
an object 𝐶 together with ℎ ∶ 𝐵 → 𝐶 such that ℎ(𝑓(𝑎)) = ℎ(𝑔(𝑎)), as usual satisfying the universal
property that any other ℎ2 ∶ 𝐵 → 𝐷 with this property factors through 𝐶 (this means, 𝐶 is the
‘closest’ object to 𝐵 making 𝑓 and 𝑔 equal). One place coequalizers arise in practice is the tensor
product. If 𝑅 is a commutative ring and 𝑀 and 𝑁 are 𝑅-modules, then we can compute the tensor
product 𝑀 ⊗𝑅 𝑁 as the coequalizer of the diagram 𝑀 ∐ 𝑅 ∐ 𝑁 ⇉ 𝑀 ∐ 𝑁 where one of the two
maps is the right-action of 𝑅 on 𝑀 (i.e., takes 𝑀 ∐ 𝑅 → 𝑀) and the other is the left-action of 𝑅
on 𝑁 (taking 𝑅 ∐ 𝑁 → 𝑁). The universal property of coequalizer exactly says that one can move
multiplication by 𝑟 ∈ 𝑅 across the tensor product, i.e., 𝑚 ⊗ 𝑟𝑛 = 𝑚𝑟 ⊗ 𝑛.
Example 2.5. Another important example of an indexing diagram 𝐽 is the infinite chain • → • →
• → … . For example, a functor 𝐹 ∶ 𝐽 → 𝑇 𝑜𝑝 might pick out an infinite collection of spaces and
maps 𝑋𝑛 → 𝑋𝑛+1 illustrating how to glue on one cell at a time. The colimit is the space that the
diagram is ‘trying to be’ in the same way that a limit of a sequence of numbers is the number that
the sequence is trying to be. We call such a colimit a directed colimit. Note that this indexing
diagram is infinite. Some authors only require 𝒞 to have finite colimits, meaning colimits of finite
diagrams, like the two preceding examples.



2 Category Theory Background 4

A final example of colimit that we’ll discuss in more detail describes a group action on an object
of 𝒞.
Example 2.6. Let 𝐺 be a finite group and let the indexing category 𝐽 be the category 𝐺 that has
one object, |𝐺| arrows (one for each element of the group), and composition law given by the group
law (i.e., 𝑓𝜎 ∘ 𝑓𝜏 = 𝑓𝜎⋅𝜏). In this case a functor 𝐹 ∶ 𝐺 → 𝒞 simply picks out one object 𝑀 ∈ 𝒞 and
lets 𝐺 act on 𝑀 via automorphisms of 𝑀 , one assigned to each group element 𝑔 ∈ 𝐺. Functoriality
assures us that the action law 𝑔1 ⋅ (𝑔2 ⋅ 𝑚) = (𝑔1 ∗ 𝑔2) ⋅ 𝑚 is satisfied. In the category of smoooth
manifolds, the fact that 𝐺 sits inside Aut(𝑀) tells us 𝐺 is isomorphic to a group of diffeomorphisms,
so the action map is necessarily smooth even though the group 𝐺 need not be a Lie group or have a
smooth structure. The colimit of this diagram is the object 𝑀/ ∼ where we have identified 𝑚1 and
𝑚2 if there is some 𝑔 such that 𝑔 ⋅ 𝑚1 = 𝑚2. This object is also known as the orbit space or space
of coinvariants 𝑀𝐺, and is an important object in equivariant homotopy theory.

We need one more definition. For a cardinal 𝜅, an object 𝑋 is called 𝜅-small if 𝐻𝑜𝑚(𝑋, −)
commutes with 𝜅-directed colimits, i.e., colimits of functors from 𝜅 to 𝒞 [Hov99].
Definition 2.7. A category is called locally presentable if it has all small colimits and if there
is regular cardinal 𝜅 and a set 𝑆 of 𝜅-small objects, such that every object can be obtained as a
𝜅-filtered colimit of a diagram of objects in 𝑆.

For example, the category of sets is locally presentable because every set is a directed colimit of
its finite subsets, so we take 𝜅 = ℵ0 and take 𝑆 to be the set of finite subsets. Similarly, the category
of simplicial sets is locally presentable [Hov99, Chapter 3].

2.1 Model categories

Model categories were invented in 1967 by Dan Quillen, whose key observation was that in 𝑇 𝑜𝑝
one cares not only about weak equivalences, but also about cofibrations and fibrations [Hov99].
Cofibrations are morphisms that are used to build more complicated spaces from simpler ones, e.g.,
morphisms that glue new cells to old spaces. Fibrations are the homotopy theorist’s version of
projection, e.g., the morphism from the total space to the base space in a vector bundle, or projection
from a Lie group onto its quotient by a subgroup. With these classes of morphisms in mind, we now
define the notion of a model category.
Definition 2.8. A model category is a category ℳ with all limits and colimits, and with three
distinguished classes of morphisms called weak equivalences 𝒲, cofibrations 𝒬, and fibrations ℱ such
that

• 𝒲 satisfies the 2-out-of-3 property, i.e., if two out of the three morphisms 𝑓, 𝑔, 𝑔 ∘ 𝑓 are in 𝒲,
then so is the third.

• 𝒲, 𝒬, ℱ are closed under retracts, where 𝑓 is a retract of 𝑔 if 𝑓 and 𝑔 fit into a commutative
diagram where the horizontal composites are 𝑖𝑑𝐴 and 𝑖𝑑𝐵 respectively:

𝐴 //

𝑓
��

𝐶 //

𝑔
��

𝐴
𝑓
��

𝐵 // 𝐷 // 𝐵

• Trivial cofibrations (i.e., morphisms in 𝒬 ∩ 𝒲) satisfy the left lifting property with respect to
fibrations, i.e., when 𝑓 ∈ 𝒬 ∩ 𝒲 and 𝑔 ∈ ℱ then the lift below exists and makes both triangles
commute.

𝐴 //

𝑓
��

𝐶
𝑔
��

𝐵 //

??

𝐷
Similarly, cofibrations satisfy the left lifting property with respect to trivial fibrations. Dually,
we say fibrations satisfy the right lifting property.
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• Any morphism 𝑓 can be factored into two composites: either a cofibration followed by a trivial
fibration or a trivial cofibration followed by a fibration. Furthermore, the assignment of 𝑓 to
any of these factoring morphisms is functorial.

The benefit of model categories is that they have homotopy categories Ho(ℳ) ∶= ℳ[𝒲−1] and
the morphisms in these homotopy categories can be understood via the structure on ℳ. Let ∅ be
the initial object of ℳ and ∗ be the terminal object. If ∅ = ∗ then we say ℳ is pointed.
Definition 2.9. An object 𝐴 is cofibrant if the natural morphism ∅ → 𝐴 is a cofibration. Dually, an
object 𝐵 is fibrant if 𝐵 → ∗ is a fibration.

Let ℳ𝑐𝑓 denote the subcategory of cofibrant and fibrant objects of ℳ (a.k.a., bifibrant objects).
There is an equivalence of categories ℳ𝑐𝑓/∼ ≅ Ho(ℳ) where ∼ is the homotopy relation [Hov99,
Theorem 1.2.10].

The classes 𝒬 and ℱ have the added benefit of providing cofibrant and fibrant replacement functors
on ℳ. These are methods of functorially replacing objects by nicer objects that are the same up to
homotopy (i.e., isomorphic in ℳ[𝒲−1]).
Definition 2.10. For any object 𝑋 in a model category ℳ, the cofibrant replacement of 𝑋 is
the cofibrant object 𝑄𝑋 and the morphism 𝑄𝑋 → 𝑋 obtained by applying the cofibration-trivial
fibration factorization to the natural morphism ∅ → 𝑋. So 𝑄𝑋 → 𝑋 is a trivial fibration with
cofibrant domain, and any morphism 𝑓 ∶ 𝑋 → 𝑌 yields a morphism 𝑄𝑓 ∶ 𝑄𝑋 → 𝑄𝑌 by functoriality.

Dually, the fibrant replacement of an object 𝐴 is a fibrant object 𝑅𝐴 together with a trivial
cofibration 𝐴 → 𝑅𝐴. Fibrant replacement is obtained by applying the trivial cofibration-fibration
factorization to the natural morphism 𝑌 → ∗. A morphism 𝑔 ∶ 𝐴 → 𝐵 gives rise to a morphism
𝑅𝑔 ∶ 𝑅𝐴 → 𝑅𝐵 by functoriality.

In 𝑇 𝑜𝑝, cellular approximation is a cofibrant replacement. In 𝐶ℎ(𝑅) projective resolution is a
cofibrant replacement, or injective resolution can be a fibrant replacement. The fact that 𝐶ℎ(𝑅) is
a model category allows for hands-on constructions within the derived category 𝒟(𝑅), leading to
a better understanding of the morphisms between two objects, the triangulated structure, derived
functors, and algebraic invariants such as André-Quillen cohomology.

The correct notion of a functor between model categories (i.e., one that respects the homotopy-
theoretic structure) is that of a left Quillen functor.
Definition 2.11. Let ℳ and 𝒩 be model categories and let 𝐹 ∶ ℳ ⇆ 𝒩 ∶ 𝑈 be an adjoint pair of
functors (where 𝐹 is left adjoint to 𝑈). We say 𝐹 is a left Quillen functor, if it preserves cofibrations
and trivial cofibrations. We say 𝑈 is a right Quillen functor if it preserves fibrations and trivial
fibrations.

We say the pair (𝐹 , 𝑈) is a Quillen equivalence if it descends to an adjoint equivalence of categories
Ho(ℳ) ⇆ Ho(𝒩).

3 Categories of manifolds lack colimits

In this section, we provide concrete examples illustrating that various categories of manifolds lack
colimits, and hence cannot be model categories. Because some authors only require model categories
to have finite limits and colimits, we focus our counterexamples on finite colimits. We fix the following
notation:

• 𝑀𝑛𝑓𝑑 is the category of smooth manifolds, with smooth maps.
• 𝑇 𝑜𝑝𝑀𝑛𝑓𝑑 is the category of topological manifolds, with continuous maps.
• 𝐿𝑖𝑒𝐺𝑝 is the category of Lie groups.

In order to do homotopy theory with manifolds, we’d like to know whether these categories are
closed under colimits. The answer is no, as we will now demonstrate.
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The first idea for finding a counterexample is to try gluing things together. An easy example is to
take two circles and glue them together at a point (this is a pushout in 𝑇 𝑜𝑝, of the span 𝑆1 ← ∗ → 𝑆1)
to get a space that looks like a figure eight, a space usually denoted 𝑆1 ∨ 𝑆1. At the point where the
two circles are glued together, there is no local neighborhood homeomorphic to ℝ. For the sake of
completeness, we show how to check that this space really is the colimit.
Example 3.1. The pushout of 𝑆1 ← {0} → 𝑆1 is 𝑃 = 𝑆1 ∨ 𝑆1, which we view as a subspace of ℝ2,
as two circles of radius 1, centered on the points (-1,0) and (1,0), and intersecting at (0,0). To show
this, note that the diagram maps to 𝑃 , since we can include the left copy of 𝑆1 as the circle around
(-1,0) (call this map 𝑖), the right copy as the circle around (1,0) (call this map 𝑗), and {0} as {(0, 0)}.
If the diagram maps to any other object 𝑌 (say by maps 𝑓 from the left copy of 𝑆1 and 𝑔 from the
right copy) then there is a unique map from 𝑃 to 𝑌 by sending a point 𝑖(𝑎) to 𝑓(𝑎) and sending 𝑗(𝑏)
to 𝑔(𝑏), and using the fact that 𝑖(0) = 𝑗(0) = (0, 0) will map to 𝑓(0) = 𝑔(0). This proves that 𝑃
has the universal property of the pushout, so 𝑃 is the pushout. However, 𝑃 is clearly not a manifold
because the origin doesn’t have a locally Euclidean neighborhood.

There is one subtlety that the proof above leaves out. We computed the pushout in the category
of topological spaces and saw that it’s not a manifold. But how do we know that the pushout in
the category of manifolds is the same as the pushout in the category of topological spaces? Clearly,
we need a proof by contradiction, and this can be accomplished in a way analogous to Example 3.2
below. However, because it’s easier and more broadly applicable, we now explain a different way to
prove that this span does not have a colimit in 𝑀𝑛𝑓𝑑. In the proof above, 𝑌 was allowed to be any
topological space. If we tried to run this proof in 𝑀𝑛𝑓𝑑, it wouldn’t work because 𝑃 is not an object
in 𝑀𝑛𝑓𝑑. If we try to run the proof in 𝑇 𝑜𝑝 but where 𝑌 is only allowed to be a manifold (and we
only consider smooth maps everywhere), then we’re secretly relying on an unproven hope that the
inclusion of 𝑀𝑛𝑓𝑑 into 𝑇 𝑜𝑝 respects colimits. That hope is actually false, but this is the right idea.
We need to use a category other than 𝑇 𝑜𝑝.

One way to prove that a given diagram in 𝑀𝑛𝑓𝑑 does not have a colimit, is to embed 𝑀𝑛𝑓𝑑, in a
colimit-preserving way, into a category that has all colimits, and then prove that the colimit, computed
in that category, is not in the image of the embedding.1 For 𝑀𝑛𝑓𝑑 to be a full subcategory of
some 𝒞 simply means that all the morphisms between two manifolds 𝑀 and 𝑁 are still morphisms
between their images in 𝒞.

For example, the contravariant functor taking a manifold to the space of smooth functions
𝐶∞(𝑀, ℝ) preserves colimits. Note that when we say a contravariant function preserves colimits,
this means it takes colimits to limits. This can be used to prove that the span above does not have
a pushout in the category of smooth manifolds (or Lie groups) because if it did, then the resulting
manifold would have a point with a 2-dimensional tangent space. That can be verified by letting 𝐼
be the ideal of functions that vanish at the bad point (the origin in our example above), and then
computing that dimℝ 𝐼2/𝐼3 = 2, whereas at every other point, the tangent space has dimension 1.
An analogous proof, using the space of continuous functions, works to prove that 𝑇 𝑜𝑝𝑀𝑛𝑓𝑑 does
not have pushouts in general.

Another category that the category of smooth manifolds embeds into in a colimit-preserving way
is the category ℱ of Frölicher spaces [Sta11, Definition 2.5]. This ℱ has both limits and colimits, so
can be used to address questions about the existence of limits as well. Frölicher spaces are determined
by smooth maps to/from ℝ, and hence it is easy to argue as in Example 3.1 that the pushout of our
bad span is 𝑆1 ∨ 𝑆1 in ℱ (because, any smooth function from the pushout to ℝ factors through the
inclusion of the pushout into ℝ2) and that this object is not in the image of the embedding.

This example of a simple pushout that causes trouble in the local structure of a manifold can
be tweaked to provide similar counterexamples showing that the following categories do not have
finite colimits and hence cannot have model structures: complex manifolds (lacks the pushout of
ℂ ← {0} → ℂ), complex analytic spaces, manifolds with boundary, and symplectic, Riemannian, and
piecewise-linear manifolds. A related example is that the pushout of the span ℝ ← (ℝ − {0}) → ℝ,
in 𝑇 𝑜𝑝, is the line with double origin, and is not even Hausdorff, so cannot be a manifold. However,
that span actually does have a pushout in the category of manifolds (namely, ℝ itself), so we didn’t
choose this example as our counterexample above.

1 The author learned of this strategy from https://mathoverflow.net/questions/19116/
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These example can also be tweaked2 to show that the category of schemes does not have all
colimits. Let 𝑘 be a field and let 𝔸1 denote the affine line. Recall that the category of affine schemes
is isomorphic to the opposite category of 𝑘-algebras.
Example 3.2. Consider the diagram Spec(𝑘(𝑡)) ⇉ 𝔸1 ∐ 𝔸1, where the two maps are the two inclu-
sions. This diagram does not have a coequalizer in the category of schemes. Morally, the coequalizer
is trying to be two copies of the affine line glued together along their generic points or, equivalently,
𝔸1 with all closed points doubled, like the line with two origins discussed above. But this object is
too non-separated to be a scheme. This coequalizer can be computed in the category of algebraic
spaces, just as we did above enlarging 𝑀𝑛𝑓𝑑 to the category of Frölicher spaces.

For the sake of contradiction, suppose that this diagram does have a coequalizer, 𝐶, in the
category of schemes, and let 𝑓 ∶ 𝔸1 ∐ 𝔸1 → 𝐶 be the coequalizer morphism. Let 𝑈 be an affine open
set containing the generic point of 𝐶. Then 𝑓−1(𝑈) yields dense 𝑉1 ∐ 𝑉2 in 𝔸1 ∐ 𝔸1 and we can define
𝑊 = 𝑉1 ∩ 𝑉2 inside 𝔸1. When we compute 𝑓(𝑊 ∐ 𝑊) we see that 𝑓 must take some pair 𝑝, 𝑞 of
disjoint closed points to the same point in 𝑈 . However, this violates the universal property, because
the map 𝑔 from 𝔸1 ∐ 𝔸1 to 𝔸1 with the point 𝑞 doubled, must factor through 𝑓 , but 𝑔 separates 𝑝
and 𝑞, meaning 𝑓 cannot send those two points to the same point in 𝐶.

This example illustrates that the category 𝑆𝑐ℎ𝑘 of 𝑘-schemes cannot be a model category, because
it’s not cocomplete, and this deficiency inspired Voevodsky’s Fields Medal winning approach to
algebraic geometry via motivic homotopy theory, which we will discuss in Section 6. Interestingly,
the category 𝐴𝑓𝑓 of affine schemes over a field 𝑘 is bicomplete, because its opposite category, the
category of 𝑘-algebras, is bicomplete. However, clearly we would not want to do homotopy theory
in the category of affine schemes. First, a scheme is glued together from affine schemes using the
Zariski topology, and so every non-affine scheme is a colimit of affine schemes in a natural way that
the category 𝐴𝑓𝑓 doesn’t ‘see.’ Secondly, while 𝐴𝑓𝑓 has all colimits, it does not have homotopy
colimits because when you compute colimits in 𝐴𝑓𝑓 , you can get the wrong answer, geometrically.
Specifically, as observed in [Dug98, Example 2.1.1], the span 𝔸1 ← 𝔸1 − {0} → 𝔸1, where the left
map is the inclusion 𝑧 ↦ 𝑧 and the right map is 𝑧 ↦ 1

𝑧 has a pushout in both 𝐴𝑓𝑓 and in 𝑆𝑐ℎ𝑘,
but they disagree. In 𝑆𝑐ℎ𝑘, the pushout is related to the projective line. In 𝐴𝑓𝑓 , the pushout is
the terminal object, 𝑆𝑝𝑒𝑐(𝑘), because 𝑘 is the intersection of 𝑘[𝑧] and 𝑘[𝑧−1] inside 𝑘[𝑧, 𝑧−1]. To fix
this, we can enlarge 𝐴𝑓𝑓 by formally adding homotopy colimits, and it turns out we obtain the same
enlargement of 𝑆𝑐ℎ we get by formally adding colimits, as we will see in Section 6.

4 Specific Colimits of Interest in 𝑀𝑛𝑓𝑑

In this section, we investigate whether putting restrictions on the types diagrams (or on the manifolds
therein) can fix the issue identified in the previous section, and result in a class of diagrams that
do have colimits. One place this kind of philosophy came up historically was the introduction of
homogeneous spaces as manifolds 𝑀 that have a transitive action of a group 𝐺. However, what one
does with homogeneous manifolds is not to quotient by the group action (yielding 𝑀/𝐺) but rather
to realize 𝑀 as 𝐺/𝐾 where 𝐾 is the stabilizer of a point. This is also a colimit construction, and
tells us that homogeneous manifolds are the manifolds that can be realized as a (nice) colimit in the
category of Lie groups (since 𝐾 is a Lie subgroup of 𝐺 that acts on 𝐺 by left multiplication). Despite
the success of homogeneous manifolds, we will learn that in general, even very nice diagrams of very
nice manifolds still do not have colimits.

Thinking about Example 3.1, it is natural to wonder if the issue is that the manifolds appearing
have different dimensions (since 𝑆1 is a 1-manifold but {0} is a 0-manifold). Since the coproduct
of two manifolds of dimension 𝑑 is a manifold of dimension 𝑑, while the coproduct of manifolds of
different dimension is not a manifold, perhaps the colimit of a diagram of manifolds of the same
dimension is again a manifold. This turns out to be false, as the following example shows:
Example 4.1. Let (0, 1) be the open interval, viewed as a 1-manifold. Let 𝑖 be the inclusion of
(0, 1) to ℝ. Note that the pushout of the span ℝ ← (0, 1) → ℝ, where both maps are 𝑖, has a point
(namely, 0) where locally it looks like an intersection of lines, rather than ℝ1.

2 As has been done in https://mathoverflow.net/questions/9961
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This example shows that even very nice diagrams (e.g., with morphisms that are open injections)
of connected manifolds of the same dimension can fail to have colimits.

So far we’ve shown that 𝑀𝑛𝑓𝑑 is poorly behaved with respect to even very nice pushouts. A
simple example to show it’s poorly behaved with respect to colimits of directed sequences is the
sequence ℝ → ℝ2 → ℝ3 → … , where the colimit ℝ∞ is not a manifold.

Lastly, we will show that colimits that come from group actions can take us outside the category
of manifolds. The subject of group actions on manifolds has been studied much more than the other
types of colimits. For example, in Riemannian geometry these considerations give a slick proof that
𝜋1(𝑀) is countable for any manifold 𝑀 , by viewing elements of 𝜋1 as acting via deck transformations.
If we plan to mod out by a group action, then for point-set topological reasons (i.e., to get the quotient
to be Hausdorff) we need to know that the action is properly discontinuous. This means the action
is proper, i.e., 𝐺 × 𝑀 → 𝑀 × 𝑀 via (𝑔, 𝑚) ↦ (𝑚, 𝑔𝑚) is a proper map (inverse images of compact
sets are compact) and that 𝐺 is discrete. We’ll assume the action is proper, so that 𝑀/𝐺 is Hausdorff.
Quotients of second countable spaces need not be second countable, but open quotients (i.e., when
𝜋 ∶ 𝑀 → 𝑀/𝐺 is open) are. Because of how 𝑀/𝐺 is defined, the quotient map is always open. To
see this, note that 𝜋−1(𝜋(𝑈)) = ⋃𝑔 𝑔𝑈 is open and 𝜋 is a quotient map, so 𝜋(𝑈) is open in 𝑀/𝐺.

However, even though 𝑀/𝐺 is Hausdorff and second countable, there are many proper actions
where 𝑀/𝐺 is not a manifold (not even a topological manifold). A concrete counterexample [Die69,
16.10.3.4] is the action of 𝐺 = {1, −1} (a group under multiplication) on 𝑀 = ℝ. The quotient 𝑀/𝐺
is homeomorphic to the half closed ray [0, ∞) and hence is not a manifold. A positive result is that,
for a Lie group 𝐺, acting on a smooth manifold 𝑀 by diffeomorphisms (meaning 𝐺 ≤ 𝐴𝑢𝑡(𝑀) =
𝐷𝑖𝑓𝑓𝑒𝑜(𝑀, 𝑀)), 𝑀/𝐺 is a differentiable manifold and 𝜋 ∶ 𝑀 → 𝑀/𝐺 is a submersion, if and only
if the set of pairs (𝑥, 𝑦) where 𝑦 = 𝑔 ⋅ 𝑥 for some 𝑔 ∈ 𝐺, is a closed submanifold of 𝑀 × 𝑀 [Die69,
16.10.3].

An alternative way to get a positive result is to restrict to group actions that are free, meaning
fixed-point free (i.e., all stabilizer groups are trivial). The Quotient Manifold Theorem [Lee13] says
that, if 𝑀 is a smooth manifold (resp. Lie group) and 𝐺 acts smoothly, freely, and properly, then
𝑀/𝐺 is a topological manifold of dimension equal to dim 𝑀 −dim 𝐺 with a unique smooth structure
such that 𝜋 ∶ 𝑀 → 𝑀/𝐺 is a smooth covering map (resp. smooth submersion). Versions of this
theorem can also be proven for 𝐶𝑝-manifolds rather than 𝐶∞-manifolds.

Indeed, this unique smooth structure makes 𝑀 into a principal 𝐺-bundle over 𝑀/𝐺. Note that
here proper but not properly discontinuous is needed. This is one benefit of working in the Lie
group context. Another benefit of working in the Lie group context is that any continuous action
of a compact Lie group on a topological manifold is proper. However, it is disappointing that
even Lie group actions must be free in order to conclude that the orbit space is a manifold. In
equivariant homotopy theory, we can rarely reduce our attention to free group actions, and hence the
counterexamples in this section illustrate that we will need to enlarge the category of manifolds to a
bicomplete category, before we can study manifolds using model categories.

5 Embedding into a cocomplete category

In this section, we investigate various ways to enlarge the category of manifolds to deal with the
lack of colimits. As with the previous sections, we include ideas that do not work, to illustrate the
problems with various natural approaches, and warn the reader away from such bad avenues. This
section motivates the next section, which explains an idea that works well.

5.1 Orbifolds

In the previous section, we saw that it is possible to have a group action 𝐺 on a manifold 𝑀 such
that the quotient 𝑀/𝐺 is no longer a manifold. One way to get around this kind of situation is
to shift from working with manifolds to orbifolds. Since manifolds are defined locally, perhaps we
should allow local group actions, that can be different (and even different groups) in each chart.

An orbifold is a topological space that is locally a quotient of Euclidean space by the linear
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action of a finite group. So if one starts with a 𝐺-manifold 𝑀 then 𝑀/𝐺 is an orbifold, but
not all orbifolds arise this way because general orbifolds allow different groups to act in different
neighborhoods. Furthermore, even though orbifolds fix the problem that 𝑀𝑛𝑓𝑑 is not closed under
passage to coinvariants, the category 𝑂𝑟𝑏𝑖 of orbifolds is not cocomplete. So moving from 𝑀𝑛𝑓𝑑 to
𝑂𝑟𝑏𝑖 gives some colimits (those related to group actions) but not all (e.g., pushouts and coequalizers
can fail, and our examples from Section 3 still apply).

5.2 Poincaré Spaces

John Klein has recently proposed another setting for questions in differential topology. A Poincaré
space (also known as a Poincaré duality space) is, informally, a space that admits Poincaré dual-
ity. Examples include compact manifolds, homology manifolds (that is, spaces with a homology-
isomorphism to a manifold), or the space (𝑆2 ∨𝑆3)∪𝛼 𝐷5, which does not have the homotopy type of
a manifold. Sometimes, a natural colimit operation on manifolds with boundary will yield a Poincaré
space. For example, the amalgamated union of two 𝑛-manifolds with boundary is a Poincaré 𝑛-
complex, as is the quotient of a Poincaré complex by a free action of a finite group [Kle00]. We will
now give a formal definition.
Definition 5.1. A topological space 𝑋 is homotopy finite if it is homotopy equivalent to a finite
CW complex. A space finitely dominated if it is a retract of a homotopy finite space. A space
is a Poincaré space of dimension 𝑑 is a triple (𝑃 , 𝐿, [𝑃 ]) where 𝑃 is a finitely dominated space,
𝐿 is a rank one torsion-free local coefficient system 𝐿 of abelian groups on 𝑃 , and [𝑃 ] ∈ 𝐻𝑛(𝑃 ; 𝐿)
is a homology class such that for all local systems 𝐵, the homomorphism ⋂[𝑃 ] ∶ 𝐻∗(𝑃 ; 𝐵) →
𝐻𝑑−∗(𝑃 ; 𝐿 ⊗ 𝐵), obtained via the cap product, is an isomorphism.

Note that Poincaré spaces lack local structure, so many techniques from manifold theory cannot
be used in this setting. For a fixed dimension 𝑛, let 𝑃𝐷 be the topological category (meaning,
enriched in 𝑇 𝑜𝑝, which means in this case that the hom-sets are topological spaces) whose objects
are Poincaré spaces of dimension 𝑛, and where the space of morphisms from 𝑃 to 𝑄 is the space
𝐸(𝑃 , 𝑄) of Poincaré embeddings from 𝑃 to 𝑄 [Kle00].

Unfortunately, the category 𝑃𝐷 is not closed under colimits. For example, colimits can build very
large spaces out of homotopy finite spaces, that have no chance to be finitely dominated. Nevertheless,
Poincaré spaces may be well-suited to questions in functor calculus, and so we will return to them in
Section 6.

5.3 Diffeological spaces

Passing from manifolds to orbifolds, we give up some of the nice behavior we are accustomed to
with manifolds, but we obtain more colimits. In this section, we pass from manifolds to diffeological
spaces, giving up even more of our geometric intuition, but obtaining a bicomplete category that has
a model structure. The category of diffeological spaces can be thought of as sitting in between 𝑀𝑛𝑓𝑑
and 𝑇 𝑜𝑝, with more geometric information than one has in 𝑇 𝑜𝑝.
Definition 5.2. ([CW14, Definition 2.1]) A diffeological space is a set 𝑋 with a family of maps
𝑈 → 𝑋 (called plots) for each open 𝑈 ⊂ ℝ𝑛 and each n, such that for every open 𝑈, 𝑉 ⊂ ℝ𝑛 we
have

1. Every constant map 𝑈 → 𝑋 is a plot.
2. If 𝑈 → 𝑋 is a plot and 𝑉 → 𝑈 is smooth, then the composition 𝑉 → 𝑋 is a plot.
3. If 𝑈 = ⋃ 𝑈𝛼 and 𝑈 → 𝑋 is a map such that every restriction 𝑈𝛼 → 𝑋 is a plot, then 𝑈 → 𝑋

is a plot.

The morphisms in 𝐷𝑖𝑓𝑓 are maps 𝑋 → 𝑌 such that for all plots 𝑈 → 𝑋 the composition 𝑈 → 𝑌
is a plot. The category of smooth manifolds embeds as a full subcategory of 𝐷𝑖𝑓𝑓 where charts are
plots and smooth maps of manifolds give maps in 𝐷𝑖𝑓𝑓 . Furthermore, 𝐷𝑖𝑓𝑓 is closed under limits
and colimits, which is easily seen by noting that the forgetful functor to 𝑆𝑒𝑡𝑠 preserves both limits
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and colimits because it has both left (discrete diffeology) and right (indiscrete diffeology) adjoints.
For example, if 𝑌 is a quotient of 𝑋 then we can declare 𝑓 ∶ 𝑈 → 𝑌 to be a plot if for all 𝑝 ∈ 𝑈
there is a neighborhood 𝑉 where 𝑓 is of the form 𝑉 → 𝑋 → 𝑌 . Similarly, if 𝐴 is a subset of 𝑋 then
we can declare 𝑓 ∶ 𝑈 → 𝐴 to be a plot if 𝑈 → 𝐴 → 𝑋 is a plot.

In some ways 𝐷𝑖𝑓𝑓 is even nicer than 𝑇 𝑜𝑝. For instance, 𝐷𝑖𝑓𝑓 is Cartesian closed, meaning the
space of smooth maps between any two diffeological spaces is a diffeological space. This fails for
manifolds and fails for topological spaces (unless we restrict attention to compactly generated weak
Hausdorff spaces and use the compact-open topology on 𝐶(𝑋, 𝑌 )). Furthermore, 𝐷𝑖𝑓𝑓 is locally
presentable but 𝑇 𝑜𝑝 is not. Finally, 𝐷𝑖𝑓𝑓 admits lots of geometry, e.g., dimension, differential forms,
de Rham cohomology, tangent spaces, tangent bundles, etc. So the category 𝐷𝑖𝑓𝑓 is worth studying
in its own right, and also permits the types of constructions (quotients, etc) that homotopy theorists
need.

The category 𝐷𝑖𝑓𝑓 has a model structure [Kih19] defined in an analogous way to the Quillen
model structure on 𝑇 𝑜𝑝. However, this model structure is quite difficult to produce, and so far
has proven rather difficult to work with, because the standard 𝑝-simplex Δ𝑝 does not deformation
retract to its horns Λ𝑝

𝑘, as occurs in 𝑇 𝑜𝑝 [Kih19]. Christensen and Wu consider alternative generating
(trivial) cofibrations, which are easier to work with, and verify most of the model category axioms for
their proposed model structure, but unfortunately, their conjectured model structure fails to satisfy
all the model category axioms [CW14].

It is worth noting that the category of Lie groups sits inside the category of smooth manifolds, and
also embeds as a full subcategory of 𝐷𝑖𝑓𝑓 . Furthermore, Lie groups are particularly nice in 𝐷𝑖𝑓𝑓 ;
they are fibrant, which means they carry information that is important to the homotopy theory
of 𝐷𝑖𝑓𝑓 . More generally, any homogeneous space is fibrant and one can prove from this fact that
all manifolds in 𝐷𝑖𝑓𝑓 are fibrant, since the way in which 𝑀𝑛𝑓𝑑 embeds in 𝐷𝑖𝑓𝑓 sends individual
manifolds to homogeneous spaces. The proof of this fact is to note that for any 𝑀 , the group of
self-diffeomorphisms 𝐺 = 𝐷𝑖𝑓𝑓(𝑀, 𝑀) is a smooth group. So letting 𝐻 be the (smooth) subgroup
of diffeomorphisms that fix any point gives 𝑀 ≅ 𝐺/𝐻. This proof shows the strength of 𝐷𝑖𝑓𝑓 ,
since the 𝐺 above can be less rigid than a Lie group would be in general, but still works for this
construction.

While 𝐷𝑖𝑓𝑓 is a nice solution to the failure of colimits in 𝑀𝑛𝑓𝑑 and 𝐿𝑖𝑒𝐺𝑝, it does not help us
with topological manifolds, schemes, or Poincaré spaces. For that reason, we consider in the next
section a more general way to enlarge categories of manifolds into bicomplete categories, namely
categories of presheaves. Furthermore, this technique can be applied to embed 𝐷𝑖𝑓𝑓 into a category
of presheaves that has a model structure with nicer properties than those discussed above [Bun22].

6 Embeddings into categories of presheaves

In this section, we explain how to embed a category 𝒞 into a cocomplete category of presheaves,
which can be endowed with a model structure.

6.1 Presheaves

We begin with the basic definition of a presheaf [MM91, I.1].
Definition 6.1. Let 𝒟 be a category. A presheaf on 𝒟 is a functor 𝐹 ∶ 𝒟𝑜𝑝 → 𝑆𝑒𝑡. The category
of presheaves 𝑃 𝑟𝑒(𝒟) has natural transformations as morphisms, and is a locally small category
(meaning, there is only a set of morphisms between any pair of objects) if 𝒟 is a small category.

The most basic example of a presheaf is a representable presheaf 𝑅𝑋 = 𝐻𝑜𝑚(−, 𝑋), and the
Yoneda embedding 𝒟 → 𝑃𝑟𝑒(𝒟) taking 𝑋 to 𝑅𝑋 is full and faithful, allowing us to view 𝑃𝑟𝑒(𝒟)
as an extension of 𝒟. Unfortunately, our categories of manifolds are not small, which inspires the
following definition [CW24].
Definition 6.2. If 𝒞 is a category, a small presheaf on 𝒞 is a small colimit of representable functors.
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For experts, we mention that small presheaves are left Kan extensions of presheaves defined on a
small subcategory of 𝒞 [CW24]. We will denote the category of small presheaves by 𝑃𝑟𝑒(𝒞), since it is
clear from context whether 𝒞 is a small category or not. The category 𝑃𝑟𝑒(𝒞) is the free cocompletion
of 𝒞, meaning it satisfies a universal property identifying it as the ‘smallest’ category that 𝒞 embeds
into that is cocomplete [CW24]. Hence, if we want to work in a category with all small colimits,
𝑃𝑟𝑒(𝒞) is the most natural candidate.

If one wants a model category, then the most natural candidate is the category 𝑠𝑃𝑟𝑒(𝒞) of
presheaves into the category of simplicial sets. This category can be endowed with the projective
model structure, where the weak equivalences (resp. fibrations) of presheaves are natural transfor-
mations 𝑁 ∶ 𝐹 → 𝐺 that are objectwise (𝑁𝑋 ∶ 𝐹 (𝑋) → 𝐺(𝑋)) weak equivalences (resp. fibrations).
Cofibrations are then defined by the left lifting property. Alternatively, 𝑠𝑃𝑟𝑒(𝒞) has the injective
model structure, with weak equivalences and cofibrations defined objectwise.

6.2 Sheaves and sheafification

We now review sheaves, sheafification, and Grothendieck topologies, following [MM91]. Classically,
presheaves as in Definition 6.1, have domain category 𝒟 the category of open subsets of some topo-
logical space 𝑋, and there are restriction morphisms 𝑟 ∶ 𝐹 (𝑈) → 𝐹(𝑉 ) whenever 𝑉 ⊂ 𝑈 ; we denote
this restriction of 𝑠 ∈ 𝐹(𝑈) by 𝑠|𝑉 . A presheaf 𝐹 is a sheaf when it satisfies locality and gluing
axioms with respect to open covers {𝑈𝑖}𝑖∈𝐼 . Locality means that two sections 𝑠, 𝑡 ∈ 𝐹(𝑈) such that
𝑠|𝑈𝑖

= 𝑡|𝑈𝑖
for all 𝑖 ∈ 𝐼 must be equal, i.e., it is sufficient to test equality locally. The gluing condition

says that any family of sections 𝑠𝑖 ∈ 𝐹(𝑈𝑖) that agree on overlaps, i.e., 𝑠𝑖|𝑈𝑖∩𝑈𝑗
= 𝑠𝑗|𝑈𝑖∩𝑈𝑗

, assembles
to a section 𝑠 ∈ 𝐹(𝑈) such that 𝑠|𝑈𝑖

= 𝑠𝑖 for all 𝑖 ∈ 𝐼 .
Sheafification for more general domain categories 𝒟 requires a generalization of the notion of an

open cover. The analogue of an open cover of an object 𝑋 is a sieve, defined as a subfunctor of the
functor Hom(−, 𝑋) [MM91, I.4]. If 𝑋 is a topological space, a sieve is a downwards closed subset of
open sets. Note that any morphism 𝑓 ∶ 𝑌 → 𝑋 in 𝒟 yields a pullback functor 𝑓∗ taking sieves on 𝑋
to sieves on 𝑌 .

Next, we require the domain category 𝒟 of Definition 6.1 to have a Grothendieck topology 𝜏
[MM91, Definition III.1]. That means, for each object 𝑋 of 𝒟, we require a collection 𝜏(𝑋) of sieves,
satisfying axioms analogous to being a family of open covers of the objects of 𝒟. Specifically, we
require:

1. (covering) for any object 𝑋, the sieve Hom(−, 𝑋) is in 𝜏(𝑋),
2. (base change) for any morphism 𝑓 ∶ 𝑌 → 𝑋 in 𝒟 and any 𝑆 ∈ 𝜏(𝑋), the pullback 𝑓∗(𝑆) is in

𝜏(𝑌 ), and
3. (locality) if 𝑆 ∈ 𝜏(𝑋) and if 𝑅 is a sieve on 𝑋 such that 𝑓∗(𝑅) ∈ 𝜏(𝑌 ) for all 𝑓 ∶ 𝑌 → 𝑋 in 𝑆,

then 𝑅 is in 𝜏(𝑋).

The upshot of a Grothendieck topology is that it yields a notion of a sheaf [MM91, III.4] as a
presheaf 𝑃 ∶ 𝒟𝑜𝑝 → 𝑆𝑒𝑡 such that for every object 𝑋 of 𝒟, and each 𝑆 ∈ 𝜏(𝑋), the following diagram
is an equalizer diagram in sets:

𝑃(𝑋) 𝑒 // ∏
𝑓∈𝑆

𝑃(dom 𝑓) 𝑝
//𝑎
// ∏

𝑓,𝑔 𝑓∈𝑆
dom 𝑓=cod 𝑔

𝑃(dom 𝑔)

where 𝑓, 𝑔 range over composable pairs, where 𝑒(𝑥) = {𝑃(𝑓)(𝑥)}𝑓∈𝑆, where 𝑝({𝑥𝑓}𝑓∈𝑆)𝑓,𝑔 = 𝑥𝑓∘𝑔
and where 𝑎({𝑥𝑓}𝑓∈𝑆)𝑓,𝑔 = 𝑃(𝑔)(𝑥𝑓). It is helpful to realize that 𝑝 arises from the composition in
𝒟 while 𝑎 arises from the action relating 𝒟 and 𝑃 . The existence of the equalizer 𝑃(𝐶) is analogous
to the gluing condition, and the fact that it equalizes 𝑝 and 𝑎 is analogous to the locality condition.
Specialized to the classic case where 𝒟 is the collection of open subsets of 𝑋, the two definitions
of ‘sheaf’ agree. Sheaves can be described as presheaves that satisfy descent with respect to all
covering sieves in 𝜏 . The sheaf condition can be enforced by the sheafification functor, defined as
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the left adjoint to the inclusion functor from the category of sheaves into the category of presheaves.
We will see below that sheafification can also be obtained as a Bousfield localization functor, using
the framework of model categories.

6.3 Presheaves of schemes

In the 1990s, Vladimir Voevodsky wanted to use model categories to learn about schemes, abelian
varieties, and motivic cohomology. Topological cohomologies theories, like 𝐾-theory and 𝑀𝑈 , can
be studied using model structures on the category of spectra, the stabilization of the category of
spaces. The lack of colimits in the category of schemes, as detailed in Example 3.2, led Voevodsky
to embed the category 𝑆𝑚/𝑘 of smooth schemes over 𝑘 into the category of presheaves of simplicial
sets on 𝑆𝑚/𝑘, via the Yoneda embedding. Voevodsky endowed this category of presheaves with the
injective model structure. The next step is to make the model structure respect sheafification.

For this, one first fixes a Grothendieck topology on the indexing category (here, 𝑆𝑚/𝑘), since
this determines what is meant by ‘sheaf.’ Next, one defines the collection of local weak equivalences
as morphisms of simplicial presheaves that induce isomorphisms on all sheaves of homotopy groups.
One then applies left Bousfield localization (discussed in many places, e.g., [BW21]) to produce a new
model structure whose weak equivalences are the local equivalences, and whose fibrant replacement
functor is sheafification. Voevodsky invented this procedure and carried it out with respect to the
Nisnevich topology on 𝑆𝑚/𝑘 to obtain the model category 𝑆𝑝𝑐. We can see 𝑋 ∈ 𝑆𝑚/𝑘 sitting inside
𝑆𝑝𝑐 as the colimit of any Nisnevich cover of 𝑋. The Nisnevich topology sits between the Zariski
and étale topologies, which also yield model structures, but is best suited to the study of motivic
cohomology that inspired Voevodsky. Lastly, Voevodsky realized that 𝔸1 should behave like the
topological interval and hence should be contractible. The maps 𝑋 × 𝔸1 → 𝑋 generate the 𝔸1-weak
equivalences of 𝑆𝑝𝑐, and we again left Bousfield localize to come up with our final model structure
for motivic spaces 𝑆𝑝𝑐, where these morphisms are weak equivalences. Note that the treatment
given here follows [Wei04], whereas originally Voevodsky ([MV99]) used the category of simplicial
sheaves of sets in the Nisnevich topology on 𝑆𝑚/𝑘 and defined weak equivalences by way of the
functor-of-points approach to schemes.

With this category 𝑆𝑝𝑐 in hand, Voevodsky was able to study motivic cohomology and Milnor
𝐾-theory using model categories. One can stabilize 𝑆𝑝𝑐 to get a category of motivic spectra, where
these cohomologies theories are representable, and Voevodsky was then able to prove the Milnor
Conjecture, which relates the Milnor K-theory (mod 2) of a field F of characteristic ≠ 2 to the Galois
cohomology of 𝐹 with coefficients in ℤ/2ℤ. For this, in 2002, Voevodsky won the Field Medal.

6.4 Presheaves of manifolds

In 1998, inspired by Voevodsky’s approach, Dan Dugger sketched a program [Dug98] to embed a
category 𝒞 into a category of presheaves, then endow this category with the injective model structure,
then localize it with respect to a Grothendieck topology (obtaining the Čech model structure) so that
fibrant replacement is sheafification, and then localize it again so that the interval of 𝒞 (for manifolds,
this is ℝ) becomes contractible, meaning that all the maps 𝑅𝑋 × 𝐼 → 𝑅𝑋 is a weak equivalence.
The upshot of the Čech model structure is that, for every hypercover 𝑈 → 𝑋 in the Grothendieck
topology, the induced map hocolim 𝑈𝛼 → 𝑋 is a weak equivalence. In particular, this implies that
every manifold is the colimit of its atlas.

While Dugger’s preprint was never completed, most of the ideas it contained have subsequently
been worked out. First, in [Dug01], Dugger showed how to embed any small category 𝒞 into the
universal model category built from 𝒞, on the category 𝑠𝑃𝑟𝑒(𝒞). This is universal in the sense
that any map 𝛾 ∶ 𝒞 → ℳ from 𝒞 to a model category ℳ factors through the Yoneda embedding
𝒞 → 𝑠𝑃𝑟𝑒(𝒞). When applied to the setting 𝒞 = 𝑆𝑚𝑘 of the previous section, this produces a model
structure Quillen equivalent to Voevodsky’s [Dug01, Proposition 8.1]. The theory of the Čech model
structure is discussed in [Dug01, Section 7] and worked out fully in [DHI04].

Dugger also applies his machinery to topological manifolds. Since the category of topological
manifolds is not small, he defines a small indexing category 𝑀𝑎𝑛 consisting of all topological manifolds
that are contained in ℝ∞, and then proves that his universal model structure on 𝑠𝑃𝑟𝑒(𝑀𝑎𝑛) is Quillen
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equivalent to the Quillen model structure on topological spaces, so no topological information is lost
[Dug01, Proposition 8.3]. An alternative to shrinking the indexing category to 𝑀𝑎𝑛 would be to use
the theory of small presheaves [CW24].

In Dugger’s unfinished manuscript [Dug98], he sketches his program for the category of smooth
manifolds. The first part of this program was worked out in [BW13], which produces a model
structure on the category of topological presheaves, namely functors 𝐹 ∶ 𝒞𝑜𝑝 → 𝑇 𝑜𝑝, where 𝑇 𝑜𝑝
now denotes the category of compactly generated weak Hausdorff spaces. The authors apply this
machinery in the case where 𝒞 is the topological category of smooth manifolds of a fixed dimension 𝑑
and codimension zero embeddings. They endow this 𝒞 with a Grothendieck topology given by open
covers. They then verify the existence of the Čech model structure in this context (since Dugger only
ever considered simplicial presheaves), and confirm that fibrant replacement in this model structure
is homotopy sheafification. The authors go on to use this Čech model structure as a base for the
Goodwillie calculus of functors. Again, instead of restricting the size of 𝒞, they could have instead
used small presheaves [CW24]. An analogous program, constructing a model structure for complex
manifolds by embedding them into simplicial presheaves then left Bousfield localizing (and relating
the resulting model structure to the Oka principle) was carried out in [Lár04]. Subsequent work has
carried out a similar program for Stein spaces and for complex analytic spaces.

The second part of Dugger’s program, inverting the interval and proving that the resulting model
category is Quillen equivalent to the category of topological spaces, was carried out by Bunk [Bun22].
We note that Bunk replaced the indexing category by the category 𝐶𝑎𝑟𝑡 of Cartesian spaces, i.e., the
smooth manifolds that are diffeomorphic to ℝ𝑛 for some 𝑛, and considered again simplicial presheaves.
Remark 6.3. One difficulty of working with topological presheaves rather than simplicial presheaves
involves local presentability (Definition 2.7). The category of compactly generated weak Hausdorff
spaces is not locally presentable, so neither is the category of topological presheaves. For this reason,
it is more convenient to work with the projective model structure on simplicial presheaves (as is done
in [BW13]) and, when doing left Bousfield localization, one uses that this category is cellular rather
than combinatorial (these terms are defined in [Whi21a] among other places). This is further discussed
in [Whi14]. An alternative approach, carried out in [GW18] and [HW20], is to work in the category
of Δ-generated spaces, which is indeed locally presentable and still contains all CW complexes and
all compact Lie groups. The other hypothesis required for left Bousfield localization is left properness
(see [BW23] for what happens in the absence of this hypothesis) and this is automatically satisfied
for either simplicial or topological presheaves (with any of our choices of categories of spaces), as
explained in [BW15, Whi17, Whi21b].

The first part of Dugger’s program is largely formal, and can therefore be carried out for other
flavors of manifolds, such as those listed in the open problems below, once suitable Grothendieck
topologies are identified. However, as noted in [Bun22], the second part of the program (inverting the
interval and establishing the Quillen equivalence with spaces) often requires real work. We therefore
state the following open problems for readers interesting in gaining practice with the procedure
discussed in this section.
Problem 6.4. Carry out the procedure described in this section to produce model structures on
simplicial (or topological) presheaves on each of the following categories:

1. Piecewise-linear manifolds.
2. Symplectic manifolds.
3. Riemannian manifolds.
4. Lie groups.

Subsequently, localize the model categories of presheaves with respect to a Grothendieck topology,
then invert the interval, then determine whether or not the resulting model structure is Quillen
equivalent to the Quillen model structure on simplicial sets (or topological spaces).

One could also work out the monoidal properties of these model categories of presheaves, as
in [BDW23a, BDW23b, BW22, WY19b], and then address questions of preservation of algebras and
coalgebras under localization and cellularization, following [WY18a, WY18b, WY19a, WY20, WY23,
WY24].
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6.5 Presheaves of Poincaré spaces

We next apply this machinery to the category 𝑃𝐷 of Poincaré spaces, answering an open problem
posed by John Klein. Let 𝑇 𝑜𝑝𝑃𝐷 denote the category of topological functors 𝐹 ∶ 𝑃𝐷𝑜𝑝 → 𝑇 𝑜𝑝. An
example of such a functor is given by the embedding spaces 𝐸(−, 𝑁) for fixed 𝑁 ∈ 𝑃𝐷. In a 2019
talk at the Ohio State University, Klein stated the following problem:
Problem 6.5. Find a model structure on ℳ = 𝑇 𝑜𝑝𝑃𝐷 in which

1. the homotopy sheaves are the fibrant objects, and
2. homotopy sheafification is fibrant approximation.

Here, by ‘homotopy sheaf,’ Klein meant a functor satisfying homotopy descent with respect to a
specified covering family that we now define. For fixed 𝑘 ≤ ∞, let 𝐷𝑘 be the full subcategory of 𝑃𝐷
whose objects (𝑈, 𝜕𝑈) have the homotopy type of the disjoint union of 𝑗 copies of (𝐷𝑛, 𝑆𝑛−1) where
0 ≤ 𝑗 ≤ 𝑘. Define a Grothendieck topology on 𝑃𝐷 based on the collection of morphisms 𝑈𝛼 → 𝑃
where 𝑈𝛼 ∈ 𝐷𝑘. This Grothendieck topology allows us to define a notion of a homotopy sheaf, as an
object satisfying homotopical descent, i.e., 𝑋 such that hocolim 𝑈𝛼 → 𝑋 is a weak equivalence for
any covering family 𝑈•.
Theorem 6.6. There is a model structure on 𝑇 𝑜𝑝𝑃𝐷 satisfying the conditions of Problem 6.5.

Proof. First, note that the site 𝑃𝐷 is small, thanks to the finiteness conditions in the definition [Kle00,
2.3]. Hence, the projective model structure on 𝑇 𝑜𝑝𝑃𝐷 exists. Every object is fibrant, because every
space is fibrant. Every representable presheaf is cofibrant, thanks to the enriched Yoneda Lemma, as
discussed in [BW13, Section 3]. We next consider the collection of morphisms hocolim𝑆⊂𝐽 𝒞(−, 𝑈𝑆) →
𝒞(−, 𝑀) for each covering {𝑈𝛼 → 𝑀}𝛼∈𝐽 . We left Bousfield localize with respect to this collection
of morphisms, using that 𝑇 𝑜𝑝 is a cellular model category. We note that the proof in [BW13, 3.2]
works for any indexing category 𝒞 and any Grothendieck topology 𝜏 . The proof uses that 𝑇 𝑜𝑝 is
a cartesian model category, but does not require 𝒞 to be. The fibrant objects of this localization
are precisely the homotopy sheaves with respect to the given Grothendieck topology, as in [BW13,
Theorem 3.6], and fibrant replacement is homotopy sheafification, as in [BW13, Remark 3.7].

In his 2019 talk in Ohio, Klein provided an overview of manifold functor calculus, i.e., the study
of contravariant isotopy functors 𝐹 ∶ 𝒪𝑃 → 𝑇 𝑜𝑝 where 𝒪𝑃 is the poset of open subsets of a smooth
manifold 𝑃 , or to the study of enriched contravariant functors from a topological category of manifolds
(with a chosen Grothendieck topology) to 𝑇 𝑜𝑝. The goal of manifold calculus is to decompose such
functors 𝐹 into simpler pieces, just like the Taylor series decomposes a function into polynomial
pieces. An example of a functor 𝐹 that one could decompose in this way is the functor 𝐸𝑑𝑖𝑓𝑓 that
assigns to smooth manifolds 𝑈, 𝑁 the space of smooth embeddings from 𝑈 to 𝑁 . This functor
can be decomposed into a tower of simpler functors (starting with the functor of immersions) that
converge to 𝐸𝑑𝑖𝑓𝑓 , meaning 𝐸𝑑𝑖𝑓𝑓 is equivalent to the colimit of the tower. Klein hoped that the
model structure of Theorem 6.6 would be useful for similarly decomposing the space of Poincaré
embeddings of Poincaré spaces. We therefore conclude with an open problem, to carry out this
program.
Problem 6.7. Use the model structure from Theorem 6.6 to set up functor calculus in the Poincaré
setting, and use it to compute the Taylor tower of spaces of Poincaré embeddings.

The first part is entirely formal, as has been explained in [CW24] among other places. One first
further localizes the model structure in Theorem 6.6 so that the new fibrant objects are the homotopy
functors, i.e., functors taking weak equivalences to weak equivalences. For this, it is convenient to
replace 𝑇 𝑜𝑝 by the model category of Δ-generated spaces as in Remark 6.3, so that results from the
theory of locally presentable categories may be used. With the homotopy model structure in hand,
the next step is to left Bousfield localize to produce a new model structure whose fibrant objects
are the 𝑛-excisive functors, as in [CW24, Theorem 6.1], and where fibrant replacement produces
the 𝑛𝑡ℎ layer of the Taylor tower. Together, these model structures produce the Taylor tower. The
second part of Problem 6.7 will likely require geometric insight and will hopefully yield interesting
applications to Poincaré spaces (such as those discussed in [BW13]), as manifold calculus has done
for categories of manifolds.
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