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Conjectures on union-closed
families of sets
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Abstract

A family of sets A is union-closed if it is finite and nonempty with member sets that are all finite and distinct (at least one of
which is nonempty) and it satisfies the property X, Y ∈ A =⇒ X ∪Y ∈ A. Let

(
S
k

)
be the set of all k-element subsets of a

set S, and let [n] = {1, 2, · · · , n} represent
⋃

A∈AA. Further, letAB = {A ∈ A | A∩B = B} andAB = {A ∈ A | A∩B = ∅}.
We consider, for any union-closed family A, the class of conjectures UCx : ∃B ∈

( [n]
n−x+1

)
| |AB | ≥ |AB |, where x ∈ [n].

The extremal case x = n is equivalent to the union-closed sets conjecture, also known as Frankl’s conjecture, which states
that there exists an element of [n] that is in at least |A|2 member sets of A. We prove UCx for x ∈ [dn

3 e + 1], and also
investigate two strengthenings of the union-closed sets conjecture.
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1 Introduction

A family of sets A is union-closed if it is finite and nonempty with member sets that are all finite and
distinct (at least one of which is nonempty) and it satisfies the property X, Y ∈ A =⇒ X ∪ Y ∈ A.
For a union-closed family A, let [n] = {1, 2, · · · , n} represent its base set ⋃A∈AA. The union-closed
sets conjecture, also known as Frankl’s conjecture, states the following:

Conjecture 1.1. For any union-closed family A, there exists an element of [n] that is in at least
|A|
2 member sets of A.

Conjecture 1.1 has been proved for n ≤ 12 (see [11]) and |A| ≤ 50 (see [5] and [9] together
with [11]). Equivalent conjectures include the lattice formulation of the union-closed sets conjecture,
which has been verified for lower semimodular lattices (see [8]), and the graph formulation of the
union-closed sets conjecture (see [1]). The frequency in A of an element y ∈ [n] is the number of
member sets in A that contain y. A popular approach to Conjecture 1.1 is to improve the lower
bound for the highest frequency of an element from [n], proving a sequence of increasingly stronger
results. In [3], entropic methods were used to prove that there exists an element from [n] that is in at
least ε|A| member sets of A for a constant ε = 1

100 , a result which in [10] was improved to ε = 3−
√

5
2 .

Another well-studied approach aims to prove the full lower bound |A|2 for union-closed families that
decrease in size |A| as a function of n. In [4], methods of Boolean analysis were applied to prove
Conjecture 1.1 for |A| ≥ 2n−1. For a survey of many results regarding Conjecture 1.1, see [2].
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2 Considering UCx for various values of x ∈ [n] 52

Let AB = {A ∈ A | A ∩ B = B}, AB = {A ∈ A | A ∩ B = ∅}, and AB1B2 = AB1 ∩ AB2 . Also,
let

(S
k

)
be the set of all k-element subsets of a set S. In the present work, we consider the following

class of conjectures for any union-closed family A:

UCx
x∈[n]

: ∃B ∈
(

[n]
n− x+ 1

)
such that |AB| ≥ |AB|. (1.1)

Conjecture 1.1 is itself the extremal case x = n of UCx, being equivalent to the statement ∃B ∈([n]
1
)
| |AB| ≥ |AB|. Therefore, another approach to Conjecture 1.1 is to prove UCx for increasing

x. We prove UCx for x ∈ [dn
3 e+ 1] and pose a question which, if answered in the affirmative, would

prove UCx for x ∈ [bn
2 c + 1], where dn

3 e is the smallest integer greater than or equal to n
3 and bn

2 cis the largest integer less than or equal to n
2 . We then proceed to investigate two strengthenings of

Conjecture 1.1: one that imposes further constraint on the nested structure of union-closed families,
and another that proposes an alternate definition of a finite power set.

2 Considering UCx for various values of x ∈ [n]

We now prove, for any union-closed family A, UCx of (1.1) whenever x ∈ [dn
3 e+ 1].

Theorem 2.1. For any union-closed family A, ∀x ∈ [dn
3 e+ 1] UCx.

Proof. The case n = 1 consists of the statements ∃B ∈
([1]

1
)
| |AB| ≥ |AB| and ∃B ∈

([1]
0
)
| |AB| ≥

|AB|, for which B = [1] and B = ∅, respectively. For n > 1, we use induction on x.

Base Case (x = 1): ∃B ∈
([n]

n

)
| |AB| ≥ |AB|.

Proof. [n] = ⋃
A∈AA and A is union-closed. Therefore, [n] ∈ A and |A[n]| = 1. If ∅ ∈ A then

|A[n]| = 1, and if ∅ 6∈ A then |A[n]| = 0. In either case, B = [n] ∈
([n]

n

)
with |AB| ≥ |AB|.

Induction Step: ∀x ∈ [dn
3 e](∃B ∈

( [n]
n−x+1

)
| |AB| ≥ |AB| =⇒ ∃B′ ∈

( [n]
n−x

)
| |AB′ | ≥ |AB′ |).

Proof. We recall the notation AB1B2 = AB1 ∩ AB2 .

If ∃y′ ∈ B | A{y′}B\{y′} = ∅, then B′ = B \ {y′} with |AB′ | ≥ |AB| ≥ |AB| = |AB′ |.

Else, ∀y ∈ B A{y}B\{y} 6= ∅, in which case we have the following:

∃C ∈
( [n]

n−x

)
in A.

Proof. Consider the family P = ⋃
y∈B A{y}B\{y} and the set P = ⋃

p∈P p. We have that B ⊆ P ⊆ [n].
By the construction of P , ∀w ∈ P \ B ∃u ∈ B with a z ∈ A{u}B\{u} such that w ∈ z. Let Z be the
family containing a (possibly repeated) z for every w, so |Z| = |P \ B|, and let Z = ⋃

z∈Z z. Then
Z ⊇ P \B and |Z| ≤ 2|P \B|. By the union-closed property, Z must be in A if Z 6= ∅. We observe
that together |B| = n − x + 1, x ≤ dn

3 e, |P | ≤ n, and |Z| ≤ 2|P \ B| imply that |Z| ≤ 2dn
3 e − 2.

Similarly, |B| = n−x+1, x ≤ dn
3 e, and |P | ≥ |B| imply that |P | ≥ n−dn

3 e+1. Therefore, |Z| < |P |,
and P \ Z 6= ∅. Now, consider a V ( P \ Z with |V | = n− x− |Z|. Such a V must exist because of
the following two facts:

1.) n−x−|Z| ≥ 0, as x ≤ dn
3 e and |Z| ≤ 2|P \B| ≤ 2|[n]\B| = 2(n− (n−x+ 1)) = 2x− 2, making

n− x− |Z| have a minimum of n− 3dn
3 e+ 2, which itself has a minimum of 0 when n = 3k + 1 for

some whole number k.

2.) n− x− |Z| < |P \ Z|, as |P \ Z| = |P | − |Z| and |P | ≥ |B| = n− x+ 1.
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Because V ( P \ Z ⊆ B and ∀y ∈ B A{y}B\{y} 6= ∅, we have that ∀v ∈ V ∃V ′ ∈ A{v}B\{v}. We
collect a V ′ for every v into a family V and let F = ⋃

V ′∈V V
′. By the union-closed property, F must

be in A if F 6= ∅. Also, V ⊆ F and F \ V ⊆ P \ B ⊆ Z, making Z ∪ F = Z ∪ V . And because
Z ∩ V = ∅, we have |Z ∪ V | = |Z| + |V | = |Z| + (n− x− |Z|) = n− x. Thus, Z ∪ F ∈

( [n]
n−x

)
, and,

noting that Z and F cannot both be empty, we have that Z ∪F is in A by the union-closed property.

Therefore, C = Z ∪ F , and C ∈
( [n]

n−x

)
is in A.

It follows that |AC | ≥ |AC |, as any X in AC can be uniquely matched with C ∪ X in AC . C ∪ X
must be in AC by the existence of C in A and the union-closed property, and every C ∪X must be
unique as ∀X ∈ AC C ∩X = ∅.

Thus, B′ = C is in
( [n]

n−x

)
with |AB′ | ≥ |AB′ |.

The induction step is proved, as we have proved the existence of a B′ in
( [n]

n−x

)
such that |AB′ | ≥ |AB′ |

when ∃y′ ∈ B | A{y′}B\{y′} = ∅, and when ∀y ∈ B A{y}B\{y} 6= ∅.

As the induction step is proved, the proof of Theorem 2.1 is complete.

The proof method reached its limit as it achieved a minimum of n−x−|Z| = 0. We now consider
a question which, if answered in the affirmative, would extend the result to x ∈ [bn

2 c+ 1].

Question 2.2. If F is a (not necessarily union-closed) finite family of (not necessarily distinct) finite
sets such that |F| > |⋃F∈F F |+ 1, must there exist F ′ ( F with |F| − |F ′| = |⋃F∈F ′ F |+ 1?

Proposition 2.3. An affirmative answer to Question 2.2 would prove, for any union-closed family
A, UCx for all x ∈ [bn

2 c+ 1].

Proof. The proof for x ∈ [bn
2 c+ 1] would start the same as the proof for x ∈ [dn

3 e+ 1] started (except
for the case n = 1 now consisting only of the statement ∃B ∈

([1]
1
)
| |AB| ≥ |AB| (for which B = [1]),

and the induction step for n > 1 being extended from x ∈ [dn
3 e] to x ∈ [bn

2 c]). The proofs differ in
the induction step in how they show existence of C. We resume the proof at that point:

∃C ∈
( [n]

n−x

)
in A.

Proof. Recall that at this point in the proof we had assumed that ∀y ∈ B A{y}B\{y} 6= ∅. Therefore,
there must be a family S ( A with |S| = |B| such that ∀b ∈ B ∃S ∈ S ∩ A{b}B\{b}.

In this case, F from Question 2.2 corresponds to T = {S∩([n]\B) | S ∈ S}. T satisfies the definition
of F because |T | > |⋃T∈T T |+ 1, as |T | = |B| = n−x+ 1 ≥ n−bn

2 c+ 1 and |⋃T∈T T | ≤ |[n] \B| =
x− 1 ≤ bn

2 c− 1. Further, T need not be union-closed, and could have repeated member sets if some
of the member sets of S shared exactly the same elements from [n] \B.

Now applying Question 2.2 to T , there exists T ′ ( T with |T | − |T ′| = |⋃T∈T ′ T | + 1. It follows
that |⋃T∈T ′ T |+ |T ′| = |T | − 1 = |B| − 1 = (n− x+ 1)− 1 = n− x. Recall that every member set
T of T could be written as T = S \ {b} for some unique S ∈ S and b ∈ B. Let S ′ ( S be the family
consisting of the corresponding S for every T ∈ T ′. Then |⋃S∈S′ S| = |⋃T∈T ′ T | + |T ′| = n − x,
as ⋃S∈S′ S = (⋃T∈T ′ T ) ∪ B∗ and (⋃T∈T ′ T ) ∩ B∗ = ∅, where B∗ ∈

( B
|T ′|
)
. Finally, ⋃S∈S′ S ∈ A by

S ′ ( A and the union-closed property. Therefore, C = ⋃
S∈S′ S.

After C is shown to exist, the proof for x ∈ [bn
2 c + 1] is the same as that for x ∈ [dn

3 e + 1]. This
concludes the proof of Proposition 2.3.

We note that this particular method that finds C ∈
( [n]

n−x

)
in A breaks down for x > bn

2 c in the
induction step. This is because the method is not able to guarantee that [n]\B is not a proper subset
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of C, and so a fundamental problem arises when |[n] \ B| ≥ |C|, which occurs in the induction step
when x ≥ n+1

2 .

The following theorem also deals with UCx of (1.1).

Theorem 2.4. For any union-closed family A with n > 1, UCn−1 =⇒ UCn.

Proof. Without loss of generality, let {1, 2} be the doubleton from UCn−1, so |A{1,2}| ≥ |A{1,2}|. Using
the notation A{1}{2} = A{1}∩A{2} and A{2}{1} = A{2}∩A{1}, we observe that if |A{1}{2}| ≥ |A{2}{1}|,
then the singleton from UCn is equal to {1}, as (A{1,2} ∪ A{1}{2} = A{1}) ∧ (A{1,2} ∩ A{1}{2} =
∅) =⇒ |A{1}| = |A{1,2}| + |A{1}{2}| and (A{1,2} ∪ A{2}{1} = A{1}) ∧ (A{1,2} ∩ A{2}{1} = ∅) =⇒
|A{1}| = |A{1,2}| + |A{2}{1}|. Else, |A{2}{1}| > |A{1}{2}|, making the singleton from UCn equal to
{2}, as (A{1,2} ∪ A{2}{1} = A{2}) ∧ (A{1,2} ∩ A{2}{1} = ∅) =⇒ |A{2}| = |A{1,2}| + |A{2}{1}| and
(A{1,2} ∪ A{1}{2} = A{2}) ∧ (A{1,2} ∩ A{1}{2} = ∅) =⇒ |A{2}| = |A{1,2}|+ |A{1}{2}|. This concludes
the proof of Theorem 2.4.

UCn−1 =⇒ UCn in fact holds for any finite family of finite sets with n > 1, whether the family
be union-closed or not. Further, by considering the contrapositive, we have a necessary condition for
any counterexample to Conjecture 1.1, namely that a counterexample Ã on a base set [ñ] must have
|Ã{x,y}| < |Ã{x,y}| for every {x, y} in

([ñ]
2
)
. Another question is the following:

Question 2.5. For a union-closed family A with n > 1, does UCn imply UCx for all x ∈ [n− 1]?

We have already verified by Theorem 2.4 that for a union-closed family A with n > 1, UCn−1 =⇒
UCn. For answering Question 2.5, a starting point could be to prove the converse, i.e. that UCn =⇒
UCn−1. At the core of understanding Conjecture 1.1 is understanding the union-closed property in
general. The following could help in this development:

1.) Answering Question 2.2 in the affirmative, thus proving UCx for x ∈ [bn
2 c+ 1].

2.) Proving certain implications with regard to UCx, especially, for n > 4, finding x ∈ [n−1]\[dn
3 e+1]

such that UCx+1 =⇒ UCx.

3 A strengthening of Conjecture 1.1

Before presenting the strengthening of Conjecture 1.1, we discuss a theorem of Reimer in the context
of an important characteristic of union-closed families. The binary logarithm and natural logarithm
of a positive real number x are denoted by log(x) and ln(x), respectively.

Theorem 3.1 (Reimer [7]). For any union-closed family A, ∑n
k=1 |A{k}| ≥

|A|
2 log(|A|).

Theorem 3.1 was proved conclusively by Reimer without need of assuming Conjecture 1.1.
However, we show that Theorem 3.1 follows directly if we assume Conjecture 1.1, in order to
highlight the nested structure of union-closed families.

Proposition 3.2. Conjecture 1.1 =⇒ Theorem 3.1.

Proof. We show Theorem 3.1, assuming Conjecture 1.1. We use induction on size of the base set.

Base Case (n = 1): The only two union-closed families on the base set [1] are {∅, {1}} and {{1}}.
In the first case, ∑n

k=1 |A{k}| = 1 ≥ |A|2 log(|A|) = log(2) = 1. In the second case, ∑n
k=1 |A{k}| = 1 ≥

|A|
2 log(|A|) = 1

2 log(1) = 0.
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Induction Step: Without loss of generality, we consider a union-closed family A with n > 1 such
that |A{n}| = maxx∈[n]{|A{x}|}. We show that:

(
For every union-closed family A∗ on a base set

N∗ ⊆ [n− 1], ∑k∈N∗ |A∗{k}| ≥
|A∗|

2 log(|A∗|)
)

=⇒ ∑n
k=1 |A{k}| ≥

|A|
2 log(|A|).

Proof. We have c = |A{n}|
|A| ∈ [1

2 , 1], as we are assuming Conjecture 1.1. Let A{n}′ = {A \ {n} | A ∈
A{n}}. It follows that

⋃
A∈A{n}′ A = [n− 1], and ⋃A∈A{n} A = N ⊆ [n− 1]. We consider three cases:

1.) A{n} = ∅ (i.e. c = 1): By the hypothesis of the induction step, we have ∑n−1
k=1 |(A{n}

′){k}| ≥
|A{n}′|

2 log(|A{n}′|). In this case, |A{n}′| = |A|, and ∑n−1
k=1 |(A{n}′){k}| = (∑n

k=1 |A{k}|) − |A|.
Therefore, ∑n

k=1 |A{k}| ≥
|A|
2 log(|A|) + |A| > |A|

2 log(|A|).

2.) A{n} = {∅}: By the hypothesis of the induction step, we again have ∑n−1
k=1 |(A{n}

′){k}| ≥
|A{n}′|

2 log(|A{n}′|). In this case, |A{n}′| = |A| − 1, and ∑n−1
k=1 |(A{n}′){k}| = (∑n

k=1 |A{k}|) − (|A| −
1). Therefore, ∑n

k=1 |A{k}| ≥
|A|−1

2 log(|A| − 1) + |A| − 1. If |A|2 log(|A|) is a lower bound for
|A|−1

2 log(|A|−1)+|A|−1, then it must also be a lower bound for∑n
k=1 |A{k}|. Thus, in order to prove

that ∑n
k=1 |A{k}| ≥

|A|
2 log(|A|), it suffices to show that |A|−1

2 log(|A| − 1) + |A| − 1 ≥ |A|
2 log(|A|).

This is equivalent to showing that
(

2|A|−2
|A|

)|A|−1 (2|A|−1

|A|

)
≥ 1, which is true when |A| ≥ 2. Now,

A{n} = {∅} =⇒ ∅ ∈ A, and because A is union-closed, A must also contain its base set [n]. Thus,
|A| ≥ 2 and ∑n

k=1 |A{k}| ≥
|A|
2 log(|A|).

3.) A{n} 6= ∅ ∧ A{n} 6= {∅}: In this case, A{n} is union-closed in addition to A{n}′ being union-closed,
and we establish a lower bound for ∑n

k=1 |A{k}| by solving the following problem:

min
c∈[ 1

2 ,1)
{I(c)}, where I(c) = c|A|+ c|A|

2 log(c|A|) + (1− c)|A|
2 log((1− c)|A|).

In I(c), the first term c|A| comes from the c|A| = |A{n}| number of times that element n was removed
from A{n} to make A{n}′. By the hypothesis of the induction step, the second term c|A|

2 log(c|A|) is a
lower bound of∑n−1

k=1 |(A{n}′){k}|, as c|A| = |A{n}| = |A{n}
′|, and the final term (1−c)|A|

2 log((1−c)|A|)
is a lower bound of ∑k∈N |(A{n}){k}|, as (1− c)|A| = |A{n}|. For c ∈ [1

2 , 1), dI
dc = |A| + |A|

2 (log(c)−

log(1 − c)) > 0, as dI
dc

∣∣∣∣
c= 1

2

= |A| > 0 and when c ∈ [1
2 , 1), d2I

dc2 = |A|
2 ln(2)(

1
c(1−c)) > 0. Thus, the global

minimum of I(c) for c ∈ [1
2 , 1) is achieved uniquely at c = 1

2 . Plugging this minimizer into I(c) gives
I(1

2) = (1
2)|A|+ ( 1

2 )|A|
2 log((1

2)|A|) + (1− 1
2 )|A|
2 log((1− 1

2)|A|) = |A|
2 log(|A|), which is exactly the lower

bound that we intended to prove for ∑n
k=1 |A{k}|. This proves the final case of the induction step,

concluding the proof of Proposition 3.2.

In general, induction can be useful for proving properties of union-closed families, especially when
coupled with additional assumptions, because union-closed families are rich in subfamilies that are
also union-closed. The nested structure of union-closed families motivates the following strengthening
of Conjecture 1.1.

Conjecture 3.3. For any union-closed family A, if y ∈ [n] with |A{y}| = maxx∈[n]{|A{x}|} and
there exists z ∈ [n] such that A = A{y} ∪ A{z}, then |A{y}| ≥ 2|A{y}|.

Before proving that Conjecture 3.3 implies Conjecture 1.1, we present a framework for considering
union-closed families. For any union-closed family A, we define the following:
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R(i) : i ∈ Z≥0,
P = {P(i) | i ∈ [min({i | R(i) = ∅})]}, and
P : [min({i | R(i) = ∅})]→ [n],
such that R(0) = A, and:
For i ∈ Z>0:

If R(i−1) 6= ∅, then:
P (i) = min

({
y

∣∣∣∣ |(R(i−1)){y}| = maxx∈
⋃

R∈R(i−1) R{|(R(i−1)){x}|}
})

.

If (R(i−1)){P (i)} 6= {∅}, then P(i) = (R(i−1)){P (i)} and R(i) = (R(i−1)){P (i)}.

If (R(i−1)){P (i)} = {∅}, then P(i) = (R(i−1)){P (i)} ∪ {∅} and R(i) = ∅.

If R(i−1) = ∅, then R(i) = ∅.

We note that P is a partition of A with |P| = min({i | R(i) = ∅}).

Theorem 3.4. If S is a nonempty subset of [|P|], then ⋃k∈S P(k) is union-closed.

Proof. ⋃k∈S P(k) is a subfamily of A, so all of its member sets are finite and distinct. Also, ⋃k∈S P(k)

has at least one nonempty member set. To prove the union-closed property for ⋃k∈S P(k), we observe
that (X, Y ∈ ⋃k∈S P(k)) =⇒ (X ∈ P(i)∧Y ∈ P(l)), where 1 ≤ i ≤ l ≤ |P| without loss of generality.
X ∪ Y ∈ A because X, Y ∈ A and A is union-closed. If X = ∅, then X ∪ Y = Y ∈ P(l) ⊆

⋃
k∈S P(k).

Else, P (i) is inX, implying that P (i) is also inX∪Y . If i = 1, then (X∪Y ∈ A)∧(P (i) ∈ X∪Y ) =⇒
X ∪ Y ∈ P(i) ⊆

⋃
k∈S P(k). If i > 1, then ∀j ∈ [i− 1] ((P (j) 6∈ X ∧ P (j) 6∈ Y ) =⇒ P (j) 6∈ X ∪ Y ),

and it follows that ((X ∪ Y ∈ A) ∧ (P (i) ∈ X ∪ Y ) ∧ (∀j ∈ [i − 1] P (j) 6∈ X ∪ Y )) =⇒ X ∪ Y ∈
P(i) ⊆

⋃
k∈S P(k). Therefore, ⋃k∈S P(k) satisfies the union-closed property, and the proof of Theorem

3.4 is complete.

Corollary 3.5. Conjecture 1.1 implies that |P(j)| ≥
∑

i∈S |P(i)| for any nonempty subset S of
[|P|] \ [k], whenever 1 ≤ j ≤ k < |P|.

Theorem 3.6. Conjecture 3.3 =⇒ Conjecture 1.1.

Proof. We consider a union-closed family A with |P| > 1, as Conjecture 1.1 holds trivially when
|P| = 1. Assume that ∅ 6∈ A. Theorem 3.6 will be proved when we show that Conjecture 1.1
holds for both A and A ∪ {∅}. For all i in [|P| − 1], P(i) ∪ P(i+1) is a union-closed family that,
according to the framework under consideration, has its own partition P̂ = {P̂(1), P̂(2)} and function
P̂ : {1, 2} → {P̂ (1), P̂ (2)} such that P̂(1) = P(i), P̂(2) = P(i+1), P̂ (1) = P (i), and P̂ (2) = P (i + 1).
Conjecture 3.3 then applies to P(i) ∪ P(i+1) with y and z from Conjecture 3.3 respectively equal to
P̂ (1) and P̂ (2). Thus, |P(i)| ≥ 2|P(i+1)| for all i ∈ [|P| − 1], implying the following upper bound
µ(P) of ∑|P|i=2 |P(i)|:

µ(P) =

|P|−1 terms︷ ︸︸ ︷⌊1
2 |P

(1)|
⌋

+
⌊1

2

⌊1
2 |P

(1)|
⌋⌋

+
⌊1

2

⌊1
2

⌊1
2 |P

(1)|
⌋⌋⌋

+ · · ·+
⌊1

2

⌊1
2

⌊1
2 · · ·

⌊1
2 |P

(1)|
⌋
· · ·
⌋⌋⌋

.

|P|∑
i=2
|P(i)| ≤ µ(P) ≤ |P(1)|

|P|−1∑
i=1

1
2i
< |P(1)|

∞∑
i=1

1
2i

= |P(1)|.
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Therefore, |P(1)| >
∑|P|

i=2 |P(i)|, and we have that P (1) ∈ [n] with |A{P (1)}| = |P(1)| >
∑|P|

i=2 |P(i)| =
|A{P (1)}|. Conjecture 1.1 then holds for A, as |A{P (1)}| > |A|

2 .

Now consider A∪ {∅}. We have that (A∪ {∅}){P (1)} = A{P (1)} and (A∪ {∅}){P (1)} = A{P (1)} ∪ {∅}.
It follows that |(A ∪ {∅}){P (1)}| > |(A ∪ {∅}){P (1)}| − 1, and so |(A ∪ {∅}){P (1)}| ≥ |(A ∪ {∅}){P (1)}|
because |(A ∪ {∅}){P (1)}| and |(A ∪ {∅}){P (1)}| are both integers. Thus, |(A ∪ {∅}){P (1)}| ≥ |A∪{∅}|

2 ,
and Conjecture 1.1 also holds for A ∪ {∅}. This completes the proof of Theorem 3.6.

For any union-closed family A with |P| > 1, we have that |A{P (1)}{P (2)}| ≥ |A{P (2)}{P (1)}|, where
A{P (1)}{P (2)} = A{P (1)} ∩A{P (2)} and A{P (2)}{P (1)} = A{P (2)} ∩A{P (1)}. We observe that Conjecture
1.1 holds if |P| = 2. A proof technique for Conjecture 1.1 would show, for any union-closed family
A with |P| > 2, that |A{P (1),P (2)}| ≥ |A{P (1),P (2)}| (see Theorem 2.4). On the other hand, a proof
technique for Conjecture 3.3 would show, for any union-closed family A with ∅ 6∈ A and |P| = 2,
that, without loss of generality, |A{P (1),P (2)}| ≥ |A{P (2)}{P (1)}|. Figures 3.1 and 3.2 illustrate the
respective techniques.

Figure 3.1: A technique for Conjecture 1.1 attempts to find, for any union-closed family A with |P| > 2, a
unique y ∈ A{P (1),P (2)} for every x ∈ A{P (1),P (2)}.

A{P (1),P (2)}A{P (1)}{P (2)}

A{P (2)}{P (1)}

A{P (1),P (2)}

P(1)

P(2)

⋃
3≤i≤|P|

P(i)

Figure 3.2: A technique for Conjecture 3.3 attempts to find, for any union-closed family A with ∅ 6∈ A and
|P| = 2, a unique y ∈ A{P (1),P (2)} for every x ∈ A{P (2)}{P (1)}.

A{P (1),P (2)}A{P (1)}{P (2)}

A{P (2)}{P (1)}

P(1)

P(|P|) = P(2)

In both of these techniques, we determine member sets of A that necessarily belong to A{P (1),P (2)}.
To do so, we can utilize the facts that x1 ∈ A{P (1)}{P (2)} ∧ x2 ∈ A{P (2)}{P (1)} =⇒ x1 ∪ x2 ∈
A{P (1),P (2)} and y1 ∈ A{P (1),P (2)} ∧ y2 ∈ A \ A{P (1),P (2)} =⇒ y1 ∪ y2 ∈ A{P (1),P (2)}.

4 A second strengthening of Conjecture 1.1

We now consider a strengthening of Conjecture 1.1 that proposes an alternate definition of a finite
power set.
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A family of sets F is called separating if (x, y ∈ ⋃F∈F F ) ∧ (F{x} = F{y}) =⇒ x = y. In other
words, F is separating if no two distinct elements of its base set are in exactly the same member sets.

Conjecture 4.1 (Poonen [6]). If A is a separating union-closed family and is not a power set, then
maxx∈[n]{|A{x}|} > |A|

2 .

Conjecture 4.1 implies Conjecture 1.1 because any finite power set with at least one nonempty
member set satisfies Conjecture 1.1, and Conjecture 4.1 states that no other separating union-closed
family A has maxx∈[n]{|A{x}|} less than |A|

2 . This need not be explicitly stated, however, as the
following conjecture also implies Conjecture 1.1.

Conjecture 4.2. A family of sets A is a finite power set if and only if either A = {∅} or A is
union-closed and separating with maxx∈[n]{|A{x}|} = |A|

2 .

For families X and Y , let X ⊔Y = {X ∪ Y | X ∈ X ∧ Y ∈ Y}. The following lemma will be used
in showing that Conjecture 4.2 implies Conjecture 1.1.

Lemma 4.3. If X and Y are union-closed families, then X ⊔Y is also a union-closed family.

Proof. If X and Y are union-closed families, then X ⊔Y has member sets that are all finite and
distinct, and has at least one nonempty member set. To verify the union-closed property for X ⊔Y ,
we observe that for all A and B in X ⊔Y , there are X, X ′ in X and Y , Y ′ in Y such that A = X ∪Y
and B = X ′ ∪ Y ′. We must show that A ∪ B = (X ∪ Y ) ∪ (X ′ ∪ Y ′) is in X ⊔Y . Because ∪ is
commutative and associative, (X∪Y )∪ (X ′∪Y ′) = (X∪X ′)∪ (Y ∪Y ′). X∪X ′ ∈ X and Y ∪Y ′ ∈ Y
because X and Y are union-closed. Then (X ∪X ′)∪ (Y ∪Y ′) is by definition in X ⊔Y . Thus, X ⊔Y
satisfies the union-closed property, and the proof of Lemma 4.3 is complete.

Theorem 4.4. Conjecture 4.2 =⇒ Conjecture 1.1.

Proof. We first note that if a counterexample to Conjecture 1.1 exists, then a separating
counterexample to Conjecture 1.1 exists; if a counterexample is not separating, then we can make a
separating family on a smaller base set by representing as a single element every grouping of two or
more elements (from the original base set) that are contained within exactly the same member sets
of the original family. This separating family is also a counterexample as it has the same number of
member sets and the same set of element frequencies as of the original family.

Now assume that Conjecture 1.1 is false, and Ã is a separating counterexample on a base set [ñ]. We
form a union-closed family Ã′ = Ã⊔{{z}, ∅} such that z 6∈ [ñ]. By Lemma 4.3, Ã′ is union-closed
because Ã and {{z}, ∅} are both union-closed.

Next, we prove that maxx∈
⋃

A∈Ã′ A
{|Ã′{x}|} = |Ã′|

2 .

Proof. (Ã′ = Ã∪{y∪{z} | y ∈ Ã}) ∧ (z 6∈ [ñ]) =⇒ |Ã′| = 2|Ã|. Also, ∀x ∈ [ñ] ((Ã′{x} = Ã{x}∪{y∪

{z} | y ∈ Ã{x}}) ∧ (z 6∈ [ñ]) =⇒ |Ã′{x}| = 2|Ã{x}|). Therefore, ∀x ∈ [ñ] |Ã
′
{x}|
|Ã′| = |Ã{x}|

|Ã| < 1
2 , making

all elements, except for z, in ⋃A∈Ã′ A = [ñ] ∪ {z} have frequency in Ã′ less than |Ã
′|

2 . |Ã′{z}| =
|Ã′|

2 ,
as |Ã′{z}|+ |Ã′{z}| = |Ã′| and (Ã′ = Ã ∪ {y ∪ {z} | y ∈ Ã}) ∧ (z 6∈ [ñ]) =⇒ |Ã′{z}| = |Ã′{z}|. Thus,

z has the highest frequency in Ã′ among elements of ⋃A∈Ã′ A, and maxx∈
⋃

A∈Ã′ A
{|Ã′{x}|} = |Ã′|

2 .

We also have that Ã′ is separating. To prove this, we observe that {x, y} ∈
([ñ]

2
)

=⇒ Ã{x} 6= Ã{y},
as Ã itself is separating. It follows that {x, y} ∈

([ñ]
2
)

=⇒ Ã′{x} 6= Ã′{y}. Now, ∀x ∈ [ñ] (∀A ∈
Ã{x} (A ∈ Ã′ ∧ z 6∈ A)) =⇒ Ã′{x} 6= Ã′{z}. Thus, no two distinct elements of the base set of Ã′ are
in exactly the same member sets of Ã′.
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Ã′ is not a finite power set, as all elements of [ñ] have nonzero frequency in Ã′ less than |Ã
′|

2 .

Hence, Ã′ is a counterexample to Conjecture 4.2, as Ã′ 6= {∅}, Ã′ is union-closed and separating
with maxx∈

⋃
A∈Ã′ A

{|Ã′{x}|} = |Ã′|
2 , and Ã′ is not a finite power set. We have that ¬ (Conjecture 1.1)

=⇒ ¬ (Conjecture 4.2). Therefore, Conjecture 4.2 =⇒ Conjecture 1.1.

A motivation for decoupling Conjecture 4.2 from Conjecture 4.1 is to emphasize possible
equivalence with Conjecture 1.1. Conjecture 4.2 implies Conjecture 1.1, but it remains to be shown
whether Conjecture 1.1 also implies Conjecture 4.2.
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