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Finite groups as homotopy
self-equivalences of finite spaces
Juan Felipe Celis-Rojas

Abstract

We study the realization problem of finite groups as the group of homotopy classes of self-homotopy equivalences of finite
spaces. Let G be a finite group. Using an infinite family of pairwise non weakly homotopic asymmetric spaces we present
a new construction of a finite space whose group of homotopy classes of self-homotopy equivalences is isomorphic to G.
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1 Introduction

Finite spaces are topological spaces with finitely many points. One can study these spaces from
different perspectives such as partially ordered sets, simplicial complexes, group actions and category
theory. This allows us to use techniques from algebraic topology and combinatorics to study these
spaces. Thus, understanding finite spaces will give us new tools to study classical invariants from
algebraic topology.

Realization problems are widely studied in algebraic topology. Kahn’s realizability problem for
abstract groups proposed in [13] studies the group of homotopy classes of self-homotopy equivalences
for simply connected spaces. Another realization problem known as Steenrod’s G-Moore space problem
first appeared in a topology conference in Seattle 1963 see Problem 51 in Lashoff’s list [14]. Costoya,
Gomes and Viruel presented a generalized version of Steenrod’s problem for finite spaces in [6].

We focus on the realization problem for the group of homotopy classes of self-homotopy equiva-
lences. Different versions of this problem have been solved. Barmak solved it for graphs and lattices
[3], Costoya and Viruel for elliptic spaces [7] and together with Tocino and Ligouras for regular evolu-
tion algebras [8], Chocano for Alexandroff spaces [5], and Benkhalifa for infinite groups in the context
of simply connected CW-complexes [4]. The problem we are interested in, with finite spaces, can be
reduced to a graph theory problem. The group of homotopy classes of homotopy self-equivalences of
a minimal finite space is isomorphic to the automorphism group of its Hasse diagram representation.
Most results on this problem, if not all, are based on papers by Robert Frucht [9, 10, 11]. This article
presents a new solution to the realization problem.

Theorem 3.12 Let G be a finite group and S = {g1, . . . , gn} a set of generators of G. Then the group
of homotopy classes of homotopy self-equivalences of the finite space X(G, S), which is described in
Construction 3.8, is isomorphic to G.
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In Section 2 we recall basic definitions and properties of finite spaces and briefly explain how
they are related to posets. Next we present in Section 3 the realization problem on the group of
homotopy classes of self-homotopy equivalences. Inspired by Frucht’s work [9], we build an infinite
family of non-homotopic asymmetric finite spaces, i.e. spaces with trivial group of homotopy classes
of self-homotopy equivalences. These asymmetric finite spaces are the key point of our solution of the
realization problem. Starting with the Cayley graph of a given finite group, inserting such asymmetric
finite spaces allows us to differentiate edges of distinct generators and encode the direction of all edges.
This distinction induces a restriction on the automorphism group of the space built from the Cayley
graph. It turns out that this space is a minimal finite space, and then solves the realization problem.
Finally, in Section 4 we give a few simple but representative examples of our construction.

Aknowledgements. The construction presented in this paper was developed during the Summer
in the Lab program at EPFL, for which the author expresses deep gratitude. The author is especially
thankful to Kathryn Hess for the opportunity to work in her group, Jérôme Scherer for his numerous
helpful discussions and guidance on this project, Antonio Viruel for his essential suggestions regarding
this construction and his comments on a draft of this paper, the referee for their careful reading and
valuable feedback, and Peter May for inspiring the study of finite spaces through his REU programs.

2 Finite topological spaces

In this section we introduce finite topological spaces and provide some results following Peter May’s
approach [17, 16, 15], Barmak’s book [2] and insight from Hatcher’s book [12].

A finite (topological) space is a space with finitely many points. At first sight this definition may
seem uninteresting in homotopy theory; however, finite spaces give much to talk about. For example,
for any CW-complex with finitely many cells there is a finite space which is weakly homotopic to it,
see Theorem 1.7 in [16].

Notice that there are finitely many topologies on a set of n points. In a given topology in a finite
space there are finitely many open sets. So, arbitrary intersections of open sets in a finite space are
again open. A space satisfying this condition is called an Alexandroff space.
Definition 2.1. Let X be a finite space and x ∈ X. If Ux is the intersection of all open sets
containing x, define ≤ as a relation on X where x ≤ y if and only if Ux ⊆ Uy.
Remark 2.2. This relation is reflexive and transitive. It is anti-symmetric if and only if X is a
T0-space. If this is the case, then (X, ≤) is a poset.

It turns out that up to homotopy equivalence, we can always assume that X is T0, see Proposition
1.3.1 in [2]. From now on, we will always work with T0 representatives of homotopy classes ensuring
(X, ≤) is a poset.

In fact, there is an equivalence of categories between Alexandroff spaces and posets. It will be
useful to see finite spaces as posets, specially to represent them in a Hasse diagram form.
Definition 2.3. The Hasse diagram representation of a poset (X, ≤) is a directed graph whose vertex
set is X and there is a directed edge (x, y) for x ̸= y if and only if x ≤ y in X. We say that the
height of x ∈ X in the Hasse diagram of X is

ht(x) = sup
n∈N

{n : ∃ x1 < · · · < xn = x}.

Remark 2.4. Observe that an automorphism of a Hasse diagram must preserve the height of all
vertices.
Definition 2.5. Let X be a finite space. A point x ∈ X is called up-beat if there is another point
y ∈ X\{x}, x < y such that x < z implies y ≤ z. A point x ∈ X is called down-beat if there is
another point y ∈ X\{x}, y < x such that z < x implies z ≤ y.

In the Hasse diagram representation of finite spaces, up-beat and down-beat points can be easily
distinguished. These are points with only one arrow going out (respectively in) them.
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Definition 2.6. Let X be a finite space. If X is T0 and has no up-beat or down-beat points then X
is called a minimal finite space.
Theorem 2.7 ([17], Theorem 6.8). Let X be a minimal finite space and f : X → X be a continuous
map. If f is homotopic to the identity then f is the identity.

Corollary 2.8 ([17], Corollary 6.9). Let X, Y be minimal finite spaces and f : X → Y be a continuous
map. If f is a homotopy equivalence then it is a homeomorphism. □

3 Homotopy classes of self-homotopy equivalences

We will study the group of homotopy classes of self-homotopy equivalences of finite spaces, which is a
homotopy invariant notion. Since all finite spaces are homotopic to a minimal finite space, it suffices
to study it on minimal finite spaces. Additionally, from Corollary 2.8 it follows that self-homotopy
equivalences on minimal finite spaces are homeomorphisms. Thus the group of homotopy classes of
self-homotopy equivalences of a minimal finite space is equal to its group of homeomorphisms.
Remark 3.1. Recall from Section 2 that a minimal finite space is also a partially ordered set. So
a homeomorphism of a minimal finite space corresponds to a directed graph automorphism of the
Hasse-diagram of its associated poset.

Our goal is to revisit a known realization problem. For any finite group G, we want to find a finite
space X such that its group of homotopy classes of self-homotopy equivalences is isomorphic to G.
Remark 3.2. We have said before that for any finite CW-complex there is a finite space which is
weakly homotopic to it. It is important to keep in mind that the groups of homotopy classes of
self-homotopy equivalences of these spaces are not necessarily isomorphic.

3.1 Finite spaces with trivial automorphism group

To approach the realization problem, we choose a strategy for which we need to find an infinite family
of non-isomorphic posets such that their automorphism group is trivial. This is inspired in the work
of Frucht [9] where he finds an infinite family of asymmetric graphs.
Remark 3.3. Notice that an isomorphism on a minimal graph induces a bijection on sets {x ∈ X :
ht(x) = n}n∈N of the underlying poset.
Construction 3.4. For k ∈ N let Fk be the finite space on 2k + 8 points such that:

1. Its Hasse diagram has k + 4 vertices of height 1 and k + 4 vertices of height 2, and no vertices
with hight more than 2.

2. On each from {x ∈ Fk : ht(x) = i}i=1,2 there are two vertices of degree 2 and for all j ∈
{3, . . . , k + 4} one vertex of degree j.

3. One of the two vertices of degree 2 is connected to one vertex of degree 2 on different height,
and to the vertex of degree k + 4 also of different height.

4. The other vertex of degree 2 is connected to the vertices of different height, and degree k + 3
and k + 4.

This defines Fk up to isomorphism. By construction, these finite spaces are minimal since in their
Hasse diagram there are no up-beat nor down-beat points.
Proposition 3.5. There are infinitely many minimal finite spaces with trivial automorphism group.
In fact, the family of finite spaces Fk defined just above is a family of non-homotopic asymmetric
finite spaces.
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Proof. We will prove that Fk is asymmetric for all k ∈ N.
Consider the space Fk and let n = k + 4, so Fk has 2n points. Recall that automorphisms can

not change the degree of a vertex nor its height in the Hasse diagram. Thus all vertices of degree
greater than 2 are fixed by all automorphisms. Now consider the vertices of degree two. One of them
is connected to vertices of degree 2 and n = k + 4, whereas the other one is connected to vertices of
degree n and n − 1. So they can not be exchanged by any automorphism.

It follows that the only automorphism of this finite space is the identity.

Fig. 1: The asymmetric minimal finite space F3 with 14 points

Remark 3.6. The finite space Fk from Construction 3.4 is weakly homotopy equivalent to an nk-fold
wedge of 1-dimensional spheres, nk > 1. Hence Fk and Xk = (S1)∧nk are weakly equivalent while
their group of homotopy classes of self-homotopy equivalences are 0 and Aut(F (nk)) respectively,
where F (nk) is a free group on nk generators.

3.2 Finite spaces with prescribed finite automorphism group

Now we can solve the realization problem. From now on, let G be a finite group. We want to build
a minimal finite space such that its group of automorphisms is isomorphic to G.

Let S = {g1, . . . , gn} be a set of generators of G with minimal cardinality. Consider CG,S the
Cayley graph of G and color the edges (g, gkg) with color k. Denote this colored and directed graph
by Cc

G,S . Observe that CG,S has more automorphisms as a directed graph than Cc
G,S as a colored

directed graph.
Construction 3.7. Let X and B be T0 finite spaces and x ∈ X. A block replacement of x by B on
X is a finite space X̃ constructed in the following way from the Hasse diagram of X:

1. Remove the vertex x in the Hasse diagram of X while keeping track of the edges adjacent to it;
2. insert B in the place of x in the Hasse diagram of X; and
3. if ei = (y, x) was an in-edge of x then we add edges from y to all vertices of minimal height of B.

Similarly, if eo = (x, z) was an out-edge of x then we add edges from every vertex of maximal
height in B to z.

In this construction we call B a block, and X̃ is the block replacement of X at x by B.
We can generalize this construction to build a finite space from blocks. That is we start with a

finite number of blocks and we specify how we connect them. Whenever we connect two blocks, it
means that there is an edge between all vertices of maximal height of the starting block to all vertices
of minimal height of the ending block. We call this construction by blocks.
Construction 3.8. Let G be a finite group with S = {g1, . . . , gn} a minimal set of generators, and
Cc

G,S its Cayley graph. We build a finite space X(G, S) by block construction from the empty space
adding asymmetric blocks coming from vertices and edges in Cc

G,S .

1. For every element of G, add a block F0 of height 1 X(G, S);
2. For all 1 ≤ k ≤ n, for every edge of Cc

G,S of the form (g, gkg), i.e. an edge of color k:

(a) Add a block Fk of height 1 in X(G, S) representing the directed edge (g, gkg);
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(b) Add a block Fn+k of height 2 in X(G, S), representing the starting vertex of the edge
(g, gkg), and connect it the blocks of the edge (g, gkg) and vertex g, both of height 1 in
X(G, S);

(c) Add a block F2n+k of height 2 in X(G, S), representing the end point of the edge (g, gkg),
and connect it to the blocks of the edge (g, gkg) and vertex gkg, both of height 1 in X(G, S).

Remark 3.9. The finite space X(G, S) is minimal because it does not have any up-beat nor down-
beat points on its Hasse diagram since every vertex has at least two adjacent edges.

Understanding the Cayley graph of a group is fundamental for our solution of the realization
problem. The following theorem can be proven with Frucht’s results [9], and has been an inspiration
for many proofs on this subject. For example, Babai studied non-colored automorphisms of the
Cayley graph in [1].
Theorem 3.10 ([18], Theorem 4.4-8). Let G be a finite group. Then the automorphism group of the
colored directed graph Cc

G,S is isomorphic to G.

Sketch of proof. (For a complete proof see Theorem 4-8 in [18] Chapter 4). As Cc
G,S is made using

the Cayley graph of G it is not hard to see that there is an inclusion

G ↪→ Aut(Cc
G,S)

To finish, notice that the coloring avoids having different automorphisms. Every automorphism is
then generated by the generators of G.
Remark 3.11. For a given finite group G there are many graphs whose automorphism group are
isomorphic to G. Actually, Frucht proved in [9] that there are infinitely many pairwise non-isomorphic
simple graphs with automorphism group G. It is important to distinguish Frucht’s graphs which are
simple (undirected and uncolored), from the Cayley graph of a group which is directed and colored.
Theorem 3.12. Let G be a finite group and S = {g1, . . . , gn} a set of generators of G. Then the
group of homotopy classes of homotopy self-equivalences of the finite space X(G, S), which is described
in Construction 3.8, is isomorphic to G.

Proof. Recall that Corollary 2.8 implies that the group of homotopy classes of homotopy self-equivalences
of X(G, S) is isomorphic to the group of directed graph isomorphisms of its Hasse diagram as we
said in Remark 3.1. Then we want to prove the following statement: the group of directed graph
isomorphisms of the Hasse diagram of X(G, S) is isomorphic to G.

By construction of X(G, S), each automorphism of Cc
G,S induces an automorphism on X(G, S).

Then there are inclusions
Aut(Cc

G,S) ↪→ Aut(X(G, S)).
It remains to show the other inclusion. Recall that an automorphism of a Hasse diagram must
preserve the height of all vertices Remark 2.4. Let us focus only on the vertices of height 1 and
2 in X(G, S). Observing the connected components of height 1 and 2 one detects all blocks. The
isomorphism type of each block determines whether it represents a vertex (i.e. F0 isomorphism class)
or an edge of color k (i.e. Fk isomorphism class). An isomorphism must preserve these isomorphism
classes, so it sends vertices to vertices and edges of color k to edges of color k.

Now focus on vertices of height 3 and 4 in X(G, S), the connected components are the blocks
representing starting-points of edges and end-points of edges. As above, the isomorphism type de-
termines whether the block describes an starting/end-point of an edge and the color of the edge.
Therefore, an isomorphism not only preserves the color of edges but also maintains their orientation.

Then every automorphism of the Hasse diagram of X(G, S) induces an automorphism on Cc
G,S .

So there is an inclusion
Aut(X(G, S)) ↪→ Aut(Cc

G,S).
From Theorem 3.10 we know that Aut(Cc

G,S) ∼= G. This finishes the proof by finiteness of the
groups.
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4 Examples

To illustrate the proposed solution of the realization problem, we give some simple examples of our
construction.
Example 4.1. Consider the cyclic group Z/3Z of order 3. The simplest presentation of this group
is

Z/3Z = ⟨x|x3⟩
Based on the presentation above we can build CZ/3Z,{x} and X(Z/3Z, {x}). As Z/3Z has only one
generator there is only one color for the edges. We illustrate CZ/3Z,{x} in ??. Notice that it is not
possible to do a transposition on two vertices because it changes the direction of the edges.

Next we build the finite space X(Z/3Z, {x}) as described above. For simplicity of the diagrams
we represent asymmetric blocks by vertices labeled with their type. We can see X(Z/3Z, {x}) in
fig. 2.

F0 F0 F0 F1 F1 F1

F3 F4 F3 F4 F3 F4

Fig. 2: CZ/3Z,{x} and X(Z/3Z, {x})

Example 4.2. Consider the dihedral group D6 of order 6. One presentation of this group is:

D6 = ⟨τ, σ|τ 2, σ3, στστ−1⟩

Based on this presentation we can draw the colored Cayley graph of D6, shown in fig. 3. The graph
CD6,{τ,σ} has two colors: red for σ and blue for τ .

id

σ

σ2

τ

τσ

τσ2

Fig. 3: CD6,{τ,σ}

Next we build X(D6, {τ, σ}). The process we described above gives us the finite space in fig. 4.

F0 F0 F0 F0 F0 F0 F1 F1 F1 F1 F1 F1 F2 F2 F2 F2 F2 F2

F3 F4 F3 F4 F3 F4 F3 F4 F3 F4 F3 F4 F5 F6 F5 F6 F5 F6 F5 F6 F5 F6 F5 F6

Fig. 4: X(D6, {τ, σ})
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