On the size of sets avoiding a general structure

Runze Wang

Abstract

Given a finite abelian group G and a subset $S \subseteq G$, we let $N_{G,S}$ be the smallest integer N such that for any subset $A \subseteq G$ with N elements, we have $g + S \subseteq A$ for some $g \in G$. Using the probabilistic method, we prove that

$$\frac{|H_G(S)| - 1}{|H_G(S)|} |G| + \left[\left(\frac{|G|}{|H_G(S)|} \right)^{1 - |H_G(S)|/|S|} \right] \le N_{G, S} \le \left\lfloor \frac{|S| - 1}{|S|} |G| \right\rfloor + 1,$$

where $H_G(S)$ is the stabilizer of S.

Keywords: Finite abelian group, avoiding a structure, probabilistic method.

MSC 2020. Primary: 05E16. Secondary: 05D40.

1 Introduction and Main Result

Problems about avoiding structures, especially avoiding arithmetic progressions, are well-known and have been extensively studied. For example, the famous Roth's theorem, which is about avoiding three-term arithmetic progressions, was proved in [4] and has been refined in [2, 3, 5, 6]. In this succinct paper, we take the avoided structure to be a general set.

For a finite abelian group (G, +), an element $g \in G$, and a subset $S \subseteq G$, we define g + S to be $\{g + s : s \in S\}$, and define the *stabilizer* of S to be

$$H_G(S) = \{ g' \in G : g' + S = S \}.$$

It is easy to check that $H_G(S)$ is a subgroup of G, and S is the union of some cosets of $H_G(S)$.

Given a finite abelian group G and a subset $S \subseteq G$, we let $N_{G,S}$ denote the smallest integer $N \geq |S|$ such that for any subset $A \subseteq G$ with N elements, we have $g + S \subseteq A$ for some $g \in G$. Thus, for any $M \leq N_{G,S} - 1$, there exists a subset $B \subseteq G$ with M elements, such that $g + S \nsubseteq B$ for any $g \in G$. Roughly speaking, this means the additive structure of S is avoided in B.

Firstly we prove the following bounds on $N_{G, S}$, and the lower bound will be improved later.

Theorem 1.1. We have

$$\frac{|H_G(S)| - 1}{|H_G(S)|} |G| + 1 \le N_{G, S} \le \left\lfloor \frac{|S| - 1}{|S|} |G| \right\rfloor + 1.$$

Proof. For the lower bound, we can construct a subset $B \subseteq G$ with $\frac{|H_G(S)|-1}{|H_G(S)|}|G|$ elements by excluding one element from each coset of $H_G(S)$, then we will have $g + S \nsubseteq B$ for any $g \in G$.

For the upper bound, let us assume for some subset $A \subseteq G$ with $\left\lfloor \frac{|S|-1}{|S|}|G| \right\rfloor + 1$ elements, we have $g + S \nsubseteq A$ for any $g \in G$, which means $(g + S) \cap (G \setminus A) \neq \emptyset$ for any $g \in G$. For each $\alpha \in G \setminus A$, we have

$$|\{g \in G : \alpha \in g + S\}| = |\{g \in G : g \in \alpha - S\}| = |\alpha - S| = |S|,$$

which implies

$$\begin{aligned} |\{g \in G : (g+S) \cap (G \setminus A) \neq \emptyset\}| &\leq \sum_{\alpha \in G \setminus A} |\{g \in G : \alpha \in g+S\}| \\ &= |G \setminus A| |S| \\ &= \left(|G| - \left(\left\lfloor \frac{|S|-1}{|S|}|G| \right\rfloor + 1\right)\right)|S| \\ &< |G|, \end{aligned}$$

contradicting the assumption that $(g+S) \cap (G \setminus A) \neq \emptyset$ for any $g \in G$. So for any subset $A \subseteq G$ with $\left\lfloor \frac{|S|-1}{|S|}|G| \right\rfloor + 1$ elements, we can find g+S in A for some $g \in G$, and thus $N_{G,S} \leq \left\lfloor \frac{|S|-1}{|S|}|G| \right\rfloor + 1$. \Box

We have a direct corollary.

Corollary 1.2. If S is a coset of some subgroup of G, then

$$N_{G, S} = \frac{|S| - 1}{|S|} |G| + 1.$$

Proof. If S is a coset of a subgroup, then $|H_G(S)| = |S|$, and the equalities in Theorem 1.1 will be attained.

2 The Lower Bound

The lower bound in Theorem 1.1 is not always good. For example, if S is *aperiodic*, which means $|H_G(S)| = 1$, then the lower bound will be trivial.

Let $T_G(S)$ be a transversal of $G/H_G(S)$, which means $T_G(S)$ contains exactly one element from each coset of $H_G(S)$, so $|T_G(S)| = \frac{|G|}{|H_G(S)|}$. For a subset $A \subseteq G$, it is easy to see that the following two statements are equivalent.

- There exists $g \in G$, such that $g + S \subseteq A$.
- There exists $g' \in T_G(S)$, such that $g' + S \subseteq A$.

Using a classic probabilistic method that can be found in multiple places throughout Alon and Spencer's book [1], we prove another lower bound on $N_{G, S}$. We will use this result as a lemma to prove a better lower bound in Theorem 2.2, which is our final goal.

Lemma 2.1. We have

$$N_{G,S} \ge |T_G(S)|^{-1/|S|} |G| = |H_G(S)|^{1/|S|} |G|^{1-1/|S|}$$

Proof. Suppose $N \ge |S|$ is an integer such that for any subset $A \subseteq G$ with N elements, there exists $g \in G$ such that $g + S \subseteq A$. We randomly choose a set X from all N-element subsets of G, then

$$\mathbb{P}(\exists g \in G \ s.t. \ g + S \subseteq X) = \mathbb{P}(\exists g' \in T_G(S) \ s.t. \ g' + S \subseteq X) \\
\leq \sum_{g' \in T_G(S)} \mathbb{P}(g' + S \subseteq X) \\
= |T_G(S)| \frac{\binom{|G| - |S|}{N - |S|}}{\binom{|G|}{N}} \\
= |T_G(S)| \frac{N!(|G| - |S|)!}{|G|!(N - |S|)!} \\
= |T_G(S)| \frac{N(N - 1)...(N - |S| + 1)}{|G|(|G| - 1)...(|G| - |S| + 1)} \\
\leq |T_G(S)| \left(\frac{N}{|G|}\right)^{|S|}.$$

If $N < |T_G(S)|^{-1/|S|}|G|$, then $\mathbb{P}(\exists g \in G \text{ s.t. } g + S \subseteq X) < 1$, which means there is some Nelement set $A \subseteq G$ such that $g + S \notin A$ for any $g \in G$, contradiction. So $N \ge |T_G(S)|^{-1/|S|}|G|$, and thus $N_{G,S} \ge |T_G(S)|^{-1/|S|}|G| = |H_G(S)|^{1/|S|}|G|^{1-1/|S|}$.

Combining the ideas in Theorem 1.1 and Lemma 2.1, we prove the following result. In the proof, we take $G' := G/H_G(S)$ and $S' := S/H_G(S)$, then $H_{G'}(S')$ will be trivial, and by Lemma 2.1, we have $N_{G', S'} \ge |G'|^{1-1/|S'|}$. And because $N_{G', S'}$ is an integer, we know $N_{G', S'} \ge |G'|^{1-1/|S'|}$.

Theorem 2.2. We have

$$N_{G,S} \ge \frac{|H_G(S)| - 1}{|H_G(S)|} |G| + \left[\left(\frac{|G|}{|H_G(S)|} \right)^{1 - |H_G(S)|/|S|} \right].$$

Note that in this bound, if $|H_G(S)|$ is large, then $\frac{|H_G(S)|-1}{|H_G(S)|}|G|$ will be large; if $|H_G(S)|$ is small, then $\left[\left(\frac{|G|}{|H_G(S)|}\right)^{1-|H_G(S)|/|S|}\right]$ will be large. So we always have a nontrivial lower bound.

Proof. We shall construct a subset $B \subseteq G$ with $\frac{|H_G(S)|-1}{|H_G(S)|}|G| + \left[\left(\frac{|G|}{|H_G(S)|}\right)^{1-|H_G(S)|/|S|}\right] - 1$ elements, and show that $g + S \nsubseteq B$ for any $g \in G$.

By Lemma 2.1, we know that there is a subset $B' \subseteq G'$ with $\left[|G'|^{1-1/|S'|}\right] - 1$ elements, such that $g' + S' \notin B'$ for any $g' \in G'$. We let

$$B_1 = \{ b \in G : b + H_G(S) \in B' \},\$$

 \mathbf{SO}

$$|B_1| = \left(\left\lceil |G'|^{1-1/|S'|} \right\rceil - 1 \right) |H_G(S)|.$$

Then, there are |G'| - |B'| cosets of $H_G(S)$ which are not in B', we denote these cosets by $H_1, H_2, ..., H_{|G'|-|B'|}$. In each H_i , we randomly pick an element h_i , and let K_i be $H_i \setminus \{h_i\}$. We let B_2 be the union of K_i 's, namely

$$B_2 = \bigcup_{i=1}^{|G'| - |B'|} K_i.$$

We have

$$|B_2| = (|G'| - |B'|)(|H_G(S)| - 1) = (|G'| - (\left\lceil |G'|^{1 - 1/|S'|} \right\rceil - 1))(|H_G(S)| - 1).$$

Now, we take B to be $B_1 \cup B_2$, then

$$|B| = |G'|(|H_G(S)| - 1) + \left[|G'|^{1 - 1/|S'|}\right] - 1$$

= $\frac{|H_G(S)| - 1}{|H_G(S)|}|G| + \left[\left(\frac{|G|}{|H_G(S)|}\right)^{1 - |H_G(S)|/|S|}\right] - 1$

And we need to show that $g + S \nsubseteq B$ for any $g \in G$.

- If for some $g \in G$, we have $g+S \subseteq B_1$, then $g' := g+H_G(S) \in G'$ and $g'+S' \subseteq B'$, contradicting the definition of B'.
- If for some $g \in G$, we have $g + S \subseteq B$ and $(g + S) \cap B_2 \neq \emptyset$, then again we have a contradiction, because g + S is a union of $H_G(S)$ cosets, but B_2 is a union of $H_G(S)$ cosets with punched holes.

So $g + S \nsubseteq B$ for any $g \in G$.

We need to check the lower bound obtained in Theorem 2.2 is better than the one in Lemma 2.1. Although this is intuitive, we have a formal verification given by the following proposition, where g, h, and s play the roles of |G|, $|H_G(S)|$, and |S| respectively.

Proposition 2.3. Let $g, h, s \ge 1$ be three real numbers with $g \ge h$, then

$$\frac{h-1}{h}g + \left(\frac{g}{h}\right)^{1-h/s} \ge h^{1/s}g^{1-1/s}$$

Proof. We can fix g and h, and take s as a variable. Note that actually we should have $h \leq s \leq g$, but for calculation convenience, let us take $1 \leq s < \infty$. Let $f(s) = \frac{h-1}{h}g + (\frac{g}{h})^{1-h/s} - h^{1/s}g^{1-1/s}$. It turns out $f'(s) \leq 0$, so f(s) is decreasing on $[1, \infty)$. And if s is taken to be ∞ , then $f(\infty) = 0$. So we always have $f(s) \geq 0$, and thus $\frac{h-1}{h}g + (\frac{g}{h})^{1-h/s} \geq h^{1/s}g^{1-1/s}$.

Remark 2.4. Note that if S is a coset of some subgroup of G, then the lower bound in Theorem 2.2 is the same as the one in Theorem 1.1; if $|H_G(S)| = 1$ or $H_G(S) = S = G$, then the lower bound in Theorem 2.2 is the same as the one in Lemma 2.1.

In this paper, G has been assumed to be an abelian group, but in fact, if G is a finite non-abelian group, and S is a subset of G such that $H_G(S)$ is a normal subgroup, then the same argument still works.

3 An Example

We finish this short paper with an example.

Let us take G to be C_{2024} , the cyclic group of order $2024 = 2^3 \cdot 11 \cdot 23$, and take S to be the union of n cosets of the subgroup of order eight. So |S| = 8n, and if we restrict n to be in [1, 10], then

 $|H_G(S)|$ must be eight. Then by Theorem 1.1, Corollary 1.2, and Theorem 2.2, we have

$$N_{G, S} \begin{cases} = 1772 & if \ n = 1, \\ \in [1787, \ 1898] & if \ n = 2, \\ \in [1812, \ 1940] & if \ n = 3, \\ \in [1835, \ 1961] & if \ n = 4, \\ \in [1855, \ 1974] & if \ n = 5, \\ \in [1872, \ 1982] & if \ n = 6, \\ \in [1886, \ 1988] & if \ n = 7, \\ \in [1898, \ 1993] & if \ n = 8, \\ \in [1908, \ 1996] & if \ n = 9, \\ \in [1917, \ 1999] & if \ n = 10. \end{cases}$$

ACKNOWLEDGMENTS: The author thanks the anonymous reviewer for giving valuable comments and suggestions.

References

- [1] N. Alon and J. H. Spencer. *The probabilistic method*. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016.
- [2] J. Bourgain. Roth's theorem on progressions revisited. J. Anal. Math., 104:155–192, 2008.
- [3] D. R. Heath-Brown. Integer sets containing no arithmetic progressions. J. London Math. Soc. (2), 35(3):385–394, 1987.
- [4] K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104-109, 1953.
- [5] T. Sanders. On Roth's theorem on progressions. Ann. of Math. (2), 174(1):619-636, 2011.
- [6] E. Szemerédi. Integer sets containing no arithmetic progressions. Acta Math. Hungar., 56(1-2):155–158, 1990.

Runze Wang

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152, USA.

E-mail address: rwang6@memphis.edu; runze.w@hotmail.com