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On the size of sets avoiding a general L
structure

RunzE WANG

Abstract

Given a finite abelian group G and a subset S C G, we let Ng, s be the smallest integer N such that for any subset A C G
with N elements, we have g + S C A for some g € G. Using the probabilistic method, we prove that

[Ha ()| 1 G| e {|s_1 J
[Ho (9] G”Rmc(s)) <No. s < | Bli6l| +1.

where H¢(S) is the stabilizer of S.
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1 Introduction and Main Result

Problems about avoiding structures, especially avoiding arithmetic progressions, are well-known and
have been extensively studied. For example, the famous Roth’s theorem, which is about avoiding
three-term arithmetic progressions, was proved in [1] and has been refined in [2, 3, 5, 6]. In this
succinct paper, we take the avoided structure to be a general set.

For a finite abelian group (G, +), an element g € G, and a subset S C G, we define g + S to be
{g+ s:s €S}, and define the stabilizer of S to be
He(S)={¢e€G: ¢+5=5}

It is easy to check that Hg(S) is a subgroup of G, and S is the union of some cosets of Hg(5).

Given a finite abelian group G' and a subset S C G, we let Ng, g denote the smallest integer
N > |S| such that for any subset A C G with N elements, we have g+ .S C A for some g € G. Thus,
for any M < Ng, s — 1, there exists a subset B C G with M elements, such that g + S ¢ B for any
g € G. Roughly speaking, this means the additive structure of S is avoided in B.

Firstly we prove the following bounds on Ng, g, and the lower bound will be improved later.
Theorem 1.1. We have

S| -1
|51

[Ha(S)] — 1
|He ()|

IG!+1§NG,5§{ !GIJH-
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Proof. For the lower bound, we can construct a subset B C G with % |G| elements by excluding

one element from each coset of Hg(S), then we will have g+ S ¢ B for any g € G.

For the upper bound, let us assume for some subset A C G with {|S|S|1\G \J + 1 elements, we have

g+ S ¢ Afor any g € G, which means (g +5) N (G \ A) # 0 for any g € G. For each a € G\ A4, we
have

{geG:acg+S)=|{geG: gea—=SH=|a—5 =S|

which implies

{geG: (g+SN(G\NA) £ < Y HgeG: aecg+ S}
acG\A

=[G\ A[lS]

(e (] )

<1d],

contradicting the assumption that (g+.S)N(G\ A) # () for any g € G. So for any subset A C G with

{S'g_1|G|J +1 elements, we can find g+ .5 in A for some g € G, and thus Ng, s < UGIST‘G’J +1. O

We have a direct corollary.

Corollary 1.2. If S is a coset of some subgroup of G, then

S| —1
NG,S:‘ \|S]

|G| + 1.

Proof. 1f S is a coset of a subgroup, then |Hg(S)| = |S|, and the equalities in Theorem 1.1 will be
attained. O]

2 The Lower Bound

The lower bound in Theorem 1.1 is not always good. For example, if S is aperiodic, which means
|Ha(S)| = 1, then the lower bound will be trivial.

Let T¢(S) be a transversal of G/Hg(S), which means T(.S) contains exactly one element from

each coset of Hg(5), so |Ta(S)| = % For a subset A C @, it is easy to see that the following

two statements are equivalent.

e There exists g € G, such that g + .5 C A.
e There exists ¢’ € T(S), such that ¢’ + 5 C A.

Using a classic probabilistic method that can be found in multiple places throughout Alon and
Spencer’s book [1], we prove another lower bound on Ng, g. We will use this result as a lemma to
prove a better lower bound in Theorem 2.2, which is our final goal.

Lemma 2.1. We have

Ng, s > \TG(S)]‘V‘S'\G| _ ,HG(S)‘l/IS\‘G‘l—l/ISI
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Proof. Suppose N > |S| is an integer such that for any subset A C G with N elements, there exists
g € G such that g + 5 C A. We randomly choose a set X from all N-element subsets of G, then

PEgeGst. g+SCX)=P3g €T5(S) st ¢g+5CX)
< Y PlY+S5CX)

9'€Tg(S)
(355
= I76(5)| <@
N
B NG| = IS))!
AR T
()| N = DN 18] +1)

GI(G] = 1)...(1G] = [5]+ 1)

IS|
< [Tu(S)] (g‘) |

If N < |Te(S)|"Y¥IG|, then P(3 g € G st. g+ S C X) < 1, which means there is some N-
element set A C G such that g+ S ¢ A for any g € G, contradiction. So N > |T¢(S)|~Y/¥/|G|, and
thus Ng, 5 > |Ta(S)|7191|G| = [Ha(S)|M8| G181 O

Combining the ideas in Theorem 1.1 and Lemma 2.1, we prove the following result. In the proof,
we take G' := G/Hg(S) and S := S/Hq(S), then He (S') will be trivial, and by Lemma 2.1, we

have Ng» g > |G|~ 181 And because N, ¢ is an integer, we know Ngr g > “G’|1 1/\5’}

Theorem 2.2. We have

1=[Hg(9)/15]
Ha(S)|—1 G
|He ()| [He(S)|
Note that in this bound, if |[Hg(S)]| is large, then %\G\ will be large; if |Hg(S)| is small,

e\ |Ha(9)1/15]
then <|HG(S)|) will be large. So we always have a nontrivial lower bound.
, | 1—|He(S)|/1S]

Proof. We shall construct a subset B C G with GilG | + (IHG(S)I> — 1 elements,
and show that g + .5 ¢ B for any g € G.

By Lemma 2.1, we know that there is a subset B’ C G’ with “G’\l_msﬂ — 1 elements, such that
g+ S ¢ B forany ¢ € G'. We let

Bi={beG: b+ Hg(S) € B'},

o

Bil = ([l&'1¥1] = 1) |He(S)].

Then, there are |G'|—|B'| cosets of Hg(.S) which are not in B, we denote these cosets by Hy, Hy, ..., Higr—|p|-

In each H;, we randomly pick an element h;, and let K; be H;\ {h;}. We let Bs be the union of K;’s,
namely

¢’ |B|
B,= |J K.
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We have
|Bs| = (IG'] = [B'(|Ha(S)| = 1) = (|6 = ([|G'51] = 1) ) (|Ha(S)] = 1),
Now, we take B to be By U By, then
Bl = |G'|(|Ha(S)] - 1) + [|¢/[=/19] =1

_ He(9) -1 G| \LHe© VIS
T [Ha(S)] |G|+R!HG(S)\> }

And we need to show that g+ S ¢ B for any g € G.

o If for some g € G, we have g+ 5 C By, then ¢’ := g+ Hg(S) € G’ and ¢'+ 5" C B/, contradicting
the definition of B’.

o If for some g € G, we have g+ S C B and (g+.5)N By # (), then again we have a contradiction,
because g+ S is a union of Hg(.S) cosets, but By is a union of Hg(S) cosets with punched holes.

So g+ S ¢ Bforany g € G. O

We need to check the lower bound obtained in Theorem 2.2 is better than the one in Lemma 2.1.
Although this is intuitive, we have a formal verification given by the following proposition, where g,
h, and s play the roles of |G|, |Hg(S)|, and |S| respectively.

Proposition 2.3. Let g, h, s > 1 be three real numbers with g > h, then

h—1 g 1-h/s )
e J >} /s 1—1/5.

Proof. We can fix g and h, and take s as a variable. Note that actually we should have h < s < g,
but for calculation convenience, let us take 1 < s < co. Let f(s) = itg+ (£)17h/s — pl/sgl=l/s Tt
turns out f(s) <0, so f(s) is decreasing on [1, 0o). And if s is taken to be oo, then f(oco) = 0. So

1-h/s
we always have f(s) > 0, and thus %g + (%) / > pl/sgl=1/s, 0
Remark 2.4. Note that if S is a coset of some subgroup of GG, then the lower bound in Theorem 2.2

is the same as the one in Theorem 1.1; if |Hg(S)| = 1 or Hg(S) = S = G, then the lower bound in
Theorem 2.2 is the same as the one in Lemma 2.1.

In this paper, G has been assumed to be an abelian group, but in fact, if G is a finite non-abelian
group, and S is a subset of G such that Hg(.S) is a normal subgroup, then the same argument still
works.

3 An Example

We finish this short paper with an example.

Let us take G to be Cogas, the cyclic group of order 2024 = 23 - 11 -23, and take S to be the union
of n cosets of the subgroup of order eight. So |S| = 8n, and if we restrict n to be in [1, 10], then
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|He(S)| must be eight. Then by Theorem 1.1, Corollary 1.2, and Theorem 2.2, we have

= 1772 ifn=1,

€ [1787, 1898] if n =2,

€ [1812, 1940 if n =3,

€ [1835, 1961] if n =4,

N € [1855, 1974] if n =5,
%9 e 1872, 1982] if n =6,
€ [1886, 1988] if n =7,

€ [1898, 1993] if n =8,

€ [1908, 1996] if n =9,

€ [1917, 1999] if n = 10.
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