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On the size of sets avoiding a general
structure
Runze Wang

Abstract

Given a finite abelian group G and a subset S ⊆ G, we let NG, S be the smallest integer N such that for any subset A ⊆ G
with N elements, we have g + S ⊆ A for some g ∈ G. Using the probabilistic method, we prove that

|HG(S)| − 1
|HG(S)| |G| +

⌈(
|G|

|HG(S)|

)1−|HG(S)|/|S|
⌉

≤ NG, S ≤
⌊

|S| − 1
|S| |G|

⌋
+ 1,

where HG(S) is the stabilizer of S.
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1 Introduction and Main Result

Problems about avoiding structures, especially avoiding arithmetic progressions, are well-known and
have been extensively studied. For example, the famous Roth’s theorem, which is about avoiding
three-term arithmetic progressions, was proved in [4] and has been refined in [2, 3, 5, 6]. In this
succinct paper, we take the avoided structure to be a general set.

For a finite abelian group (G, +), an element g ∈ G, and a subset S ⊆ G, we define g + S to be
{g + s : s ∈ S}, and define the stabilizer of S to be

HG(S) = {g′ ∈ G : g′ + S = S}.

It is easy to check that HG(S) is a subgroup of G, and S is the union of some cosets of HG(S).
Given a finite abelian group G and a subset S ⊆ G, we let NG, S denote the smallest integer

N ≥ |S| such that for any subset A ⊆ G with N elements, we have g + S ⊆ A for some g ∈ G. Thus,
for any M ≤ NG, S − 1, there exists a subset B ⊆ G with M elements, such that g + S ⊈ B for any
g ∈ G. Roughly speaking, this means the additive structure of S is avoided in B.

Firstly we prove the following bounds on NG, S , and the lower bound will be improved later.
Theorem 1.1. We have

|HG(S)| − 1
|HG(S)| |G| + 1 ≤ NG, S ≤

⌊
|S| − 1

|S|
|G|
⌋

+ 1.

22



2 The Lower Bound 23

Proof. For the lower bound, we can construct a subset B ⊆ G with |HG(S)|−1
|HG(S)| |G| elements by excluding

one element from each coset of HG(S), then we will have g + S ⊈ B for any g ∈ G.

For the upper bound, let us assume for some subset A ⊆ G with
⌊

|S|−1
|S| |G|

⌋
+ 1 elements, we have

g + S ⊈ A for any g ∈ G, which means (g + S) ∩ (G \ A) ̸= ∅ for any g ∈ G. For each α ∈ G \ A, we
have

|{g ∈ G : α ∈ g + S}| = |{g ∈ G : g ∈ α − S}| = |α − S| = |S|,

which implies

|{g ∈ G : (g + S) ∩ (G \ A) ̸= ∅}| ≤
∑

α∈G\A

|{g ∈ G : α ∈ g + S}|

= |G \ A||S|

=
(

|G| −
(⌊

|S| − 1
|S|

|G|
⌋

+ 1
))

|S|

< |G|,

contradicting the assumption that (g +S)∩ (G\A) ̸= ∅ for any g ∈ G. So for any subset A ⊆ G with⌊
|S|−1

|S| |G|
⌋

+ 1 elements, we can find g + S in A for some g ∈ G, and thus NG, S ≤
⌊

|S|−1
|S| |G|

⌋
+ 1.

We have a direct corollary.
Corollary 1.2. If S is a coset of some subgroup of G, then

NG, S = |S| − 1
|S|

|G| + 1.

Proof. If S is a coset of a subgroup, then |HG(S)| = |S|, and the equalities in Theorem 1.1 will be
attained.

2 The Lower Bound

The lower bound in Theorem 1.1 is not always good. For example, if S is aperiodic, which means
|HG(S)| = 1, then the lower bound will be trivial.

Let TG(S) be a transversal of G/HG(S), which means TG(S) contains exactly one element from
each coset of HG(S), so |TG(S)| = |G|

|HG(S)| . For a subset A ⊆ G, it is easy to see that the following
two statements are equivalent.

• There exists g ∈ G, such that g + S ⊆ A.
• There exists g′ ∈ TG(S), such that g′ + S ⊆ A.

Using a classic probabilistic method that can be found in multiple places throughout Alon and
Spencer’s book [1], we prove another lower bound on NG, S . We will use this result as a lemma to
prove a better lower bound in Theorem 2.2, which is our final goal.
Lemma 2.1. We have

NG, S ≥ |TG(S)|−1/|S||G| = |HG(S)|1/|S||G|1−1/|S|
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Proof. Suppose N ≥ |S| is an integer such that for any subset A ⊆ G with N elements, there exists
g ∈ G such that g + S ⊆ A. We randomly choose a set X from all N -element subsets of G, then

P(∃ g ∈ G s.t. g + S ⊆ X) = P(∃ g′ ∈ TG(S) s.t. g′ + S ⊆ X)
≤

∑
g′∈TG(S)

P(g′ + S ⊆ X)

= |TG(S)|
(|G|−|S|

N−|S|
)

(|G|
N

)
= |TG(S)|N !(|G| − |S|)!

|G|!(N − |S|)!

= |TG(S)| N(N − 1)...(N − |S| + 1)
|G|(|G| − 1)...(|G| − |S| + 1)

≤ |TG(S)|
(

N

|G|

)|S|

.

If N < |TG(S)|−1/|S||G|, then P(∃ g ∈ G s.t. g + S ⊆ X) < 1, which means there is some N -
element set A ⊆ G such that g + S ⊈ A for any g ∈ G, contradiction. So N ≥ |TG(S)|−1/|S||G|, and
thus NG, S ≥ |TG(S)|−1/|S||G| = |HG(S)|1/|S||G|1−1/|S|.

Combining the ideas in Theorem 1.1 and Lemma 2.1, we prove the following result. In the proof,
we take G′ := G/HG(S) and S′ := S/HG(S), then HG′(S′) will be trivial, and by Lemma 2.1, we
have NG′, S′ ≥ |G′|1−1/|S′|. And because NG′, S′ is an integer, we know NG′, S′ ≥

⌈
|G′|1−1/|S′|

⌉
.

Theorem 2.2. We have

NG, S ≥ |HG(S)| − 1
|HG(S)| |G| +


(

|G|
|HG(S)|

)1−|HG(S)|/|S|
.

Note that in this bound, if |HG(S)| is large, then |HG(S)|−1
|HG(S)| |G| will be large; if |HG(S)| is small,

then
⌈(

|G|
|HG(S)|

)1−|HG(S)|/|S|
⌉

will be large. So we always have a nontrivial lower bound.

Proof. We shall construct a subset B ⊆ G with |HG(S)|−1
|HG(S)| |G| +

⌈(
|G|

|HG(S)|

)1−|HG(S)|/|S|
⌉

− 1 elements,

and show that g + S ⊈ B for any g ∈ G.

By Lemma 2.1, we know that there is a subset B′ ⊆ G′ with
⌈
|G′|1−1/|S′|

⌉
− 1 elements, such that

g′ + S′ ⊈ B′ for any g′ ∈ G′. We let

B1 = {b ∈ G : b + HG(S) ∈ B′},

so

|B1| =
(⌈

|G′|1−1/|S′|
⌉

− 1
)
|HG(S)|.

Then, there are |G′|−|B′| cosets of HG(S) which are not in B′, we denote these cosets by H1, H2, ..., H|G′|−|B′|.
In each Hi, we randomly pick an element hi, and let Ki be Hi \ {hi}. We let B2 be the union of Ki’s,
namely

B2 =
|G′|−|B′|⋃

i=1
Ki.
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We have

|B2| = (|G′| − |B′|)(|HG(S)| − 1) =
(
|G′| −

(⌈
|G′|1−1/|S′|

⌉
− 1

))
(|HG(S)| − 1).

Now, we take B to be B1 ∪ B2, then

|B| = |G′|(|HG(S)| − 1) +
⌈
|G′|1−1/|S′|

⌉
− 1

= |HG(S)| − 1
|HG(S)| |G| +

⌈( |G|
|HG(S)|

)1−|HG(S)|/|S|
⌉

− 1.

And we need to show that g + S ⊈ B for any g ∈ G.

• If for some g ∈ G, we have g+S ⊆ B1, then g′ := g+HG(S) ∈ G′ and g′+S′ ⊆ B′, contradicting
the definition of B′.

• If for some g ∈ G, we have g + S ⊆ B and (g + S) ∩ B2 ̸= ∅, then again we have a contradiction,
because g +S is a union of HG(S) cosets, but B2 is a union of HG(S) cosets with punched holes.

So g + S ⊈ B for any g ∈ G.

We need to check the lower bound obtained in Theorem 2.2 is better than the one in Lemma 2.1.
Although this is intuitive, we have a formal verification given by the following proposition, where g,
h, and s play the roles of |G|, |HG(S)|, and |S| respectively.
Proposition 2.3. Let g, h, s ≥ 1 be three real numbers with g ≥ h, then

h − 1
h

g +
(

g

h

)1−h/s

≥ h1/sg1−1/s.

Proof. We can fix g and h, and take s as a variable. Note that actually we should have h ≤ s ≤ g,
but for calculation convenience, let us take 1 ≤ s < ∞. Let f(s) = h−1

h g + ( g
h)1−h/s − h1/sg1−1/s. It

turns out f ′(s) ≤ 0, so f(s) is decreasing on [1, ∞). And if s is taken to be ∞, then f(∞) = 0. So
we always have f(s) ≥ 0, and thus h−1

h g +
(

g
h

)1−h/s
≥ h1/sg1−1/s.

Remark 2.4. Note that if S is a coset of some subgroup of G, then the lower bound in Theorem 2.2
is the same as the one in Theorem 1.1; if |HG(S)| = 1 or HG(S) = S = G, then the lower bound in
Theorem 2.2 is the same as the one in Lemma 2.1.

In this paper, G has been assumed to be an abelian group, but in fact, if G is a finite non-abelian
group, and S is a subset of G such that HG(S) is a normal subgroup, then the same argument still
works.

3 An Example

We finish this short paper with an example.
Let us take G to be C2024, the cyclic group of order 2024 = 23 · 11 · 23, and take S to be the union

of n cosets of the subgroup of order eight. So |S| = 8n, and if we restrict n to be in [1, 10], then



3 An Example 26

|HG(S)| must be eight. Then by Theorem 1.1, Corollary 1.2, and Theorem 2.2, we have

NG, S



= 1772 if n = 1,

∈ [1787, 1898] if n = 2,

∈ [1812, 1940] if n = 3,

∈ [1835, 1961] if n = 4,

∈ [1855, 1974] if n = 5,

∈ [1872, 1982] if n = 6,

∈ [1886, 1988] if n = 7,

∈ [1898, 1993] if n = 8,

∈ [1908, 1996] if n = 9,

∈ [1917, 1999] if n = 10.

Acknowledgments: The author thanks the anonymous reviewer for giving valuable comments and
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