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Abstract

We give an explicit point-set construction of the Dennis trace map from the K-theory of endomorphisms K End(C) to
topological Hochschild homology THH(C) for any spectral Waldhausen category C. We describe the necessary technical
foundations, most notably a well-behaved model for the spectral category of diagrams in C indexed by an ordinary category
via the Moore end. This is applied to define a version of Waldhausen’s S•-construction for spectral Waldhausen categories,
which is central to this account of the Dennis trace map.

Our goals are both convenience and transparency—we provide all details except for a proof of the additivity theorem
for THH, which is taken for granted—and the exposition is concerned not with originality of ideas, but rather aims to
provide a useful resource for learning about the Dennis trace and its underlying machinery.
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1 Introduction

This is an account of foundational material on the Dennis trace — specifically, the explicit point-set
model of the Dennis trace from [BM20, DGM13]. While working on a recent project [CLM+], the
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1 Introduction 28

authors found it useful to compile the details of several of these foundational results in the particular
setting of Waldhausen categories enriched in orthogonal spectra. This paper is the result of those
efforts, and we are sharing it in the hope that it will be useful for others. It is also written with the
goal of serving as an entry point into the area of trace methods in K-theory, so we have included a
historical overview in §2 that surveys the literature. Since that section provides the background and
motivation, we begin here with a quick summary of the paper itself.

A spectral Waldhausen category is a category C enriched in orthogonal spectra (see [MMSS01]
for details about orthogonal spectra), along with an underlying ordinary category C0 that has a
compatible Waldhausen structure (Definition 5.1). In this paper we develop the necessary background
to define the Dennis trace map

trc : K(C0) −→ THH(C) (1.1)
associated to a spectral Waldhausen category (C,C0). When C = PA is the spectral category of
perfect modules over a ring spectrum A, our definition agrees with previous definitions of the Dennis
trace map K(A) −→ THH(A) for ring spectra, e.g. [DM96, DGM13, BM20].

Our construction of the Dennis trace map relies on a version of Waldhausen’s S•-construction for
spectral Waldhausen categories. At each simplicial level, the result S•C is again a spectral Waldhausen
category, as is the iterated S•-construction S

(n)
• C := S• · · ·S•C, and so we can define THH(S(n)

• C).
The inclusion of endomorphisms into the cyclic bar construction∨

f : c→c
in End(C0)

S −→ THH(C)

can then be applied to the iterated S•-construction, giving a map of multisimplicial spectra

Σ∞ob End(w•S(n)
• C0) −→ THH(w•S(n)

• C).

Taking the geometric realization of this map and applying the additivity theorem for THH yields the
Dennis trace map

K(End(C0)) −→ THH(C)
out of endomorphism K-theory. Precomposing with the inclusion of identity endomorphisms defines
the Dennis trace map on K(C0) as in (1.1).

The bulk of the paper is concerned with defining S•C for a spectral Waldhausen category C. To
this end, we construct a spectral category Fun(I,C) of diagrams indexed by an ordinary category I
with values in a spectral category C equipped with a base category C0. The objects of Fun(I,C) are
functors of ordinary categories I −→ C0. Following McClure-Smith [MS02] and Blumberg-Mandell
[BM20], the mapping spectrum between two diagrams is built out of the Moore end. The properties of
the construction are summarized in Theorem 4.1; the essential points are that Fun(I,C) is functorial
in both variables, the spectral category Fun(∗,C) has the same homotopy type as C, and when
I = [k] = {0 → · · · → k} is a poset category, then the mapping spectrum Fun(I,C)(ϕ, γ) between
two diagrams ϕ, γ : I −→ C0 is equivalent to the homotopy limit of a zig-zag of the following form.

C(ϕ0, γ0)
((

C(ϕ1, γ1)
vv

((

· · · C(ϕk, γk)

vv
C(ϕ0, γ1) · · ·

Diagrams in C indexed by I = [k]× [k] are k×k commuting grids of morphisms in C0. Restricting
to those diagrams that encode a sequence

∗ −→ a1 −→ · · · −→ ak

of cofibrations and their quotients gives the spectral category SkC.
The other technical input for the Dennis trace map is the additivity theorem for THH. This is the

only aspect of the construction that we do not develop from scratch, instead referring to the proofs
in the literature [DM96, DGM13, BM12, BM20]. However, see the companion paper [CLM+] for a
succinct proof of additivity in the context of spectral Waldhausen categories that uses trace methods
in bicategories.
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We also do not spend a significant amount of time on the lift to topological restriction homology
(TR) and topological cyclic homology (TC). The lift to TR is treated in detail in the companion
paper [CLM+]. The lift to TC is done in a similar way, only one works with cyclotomic spectra in the
sense of [Mad94, BM15] instead of restriction systems in the sense of [CLM+]. See e.g. [Mad94, BM20]
for more details. Note that the trace to TR is defined on all of K(End(C0)) but the trace to TC is
only defined on K(C0).

1.1 Organization

To help readers who are new to the area and describe the context of the paper, §2 discusses the
history of the Dennis trace map, summarizes some of its applications in K-theory, and provides a
guide to the literature. This section is independent of the rest of the paper. We review background
material on spectral categories in §3, including a careful treatment of the central example of the
spectral category MA of module spectra over a ring spectrum A. The most technically demanding
portion of the paper is §4, where we define the spectral category Fun(I,C) of I-diagrams in C and
establish its relevant properties. The S•-construction for spectral Waldhausen categories is discussed
in §5. In §6, we analyze a general method for constructing symmetric spectra from multisimplicial
objects, as in the definition of Waldhausen’s K-theory

K(C0)n =
∣∣∣ob w•S(n)

• C0
∣∣∣, (1.2)

and explain how to take the left derived functor of this process, so that it is homotopy invariant. These
foundations are put to work in §7, where we define the Dennis trace map. Appendix A discusses
model category structures on symmetric-orthogonal bispectra, and explains how to move between
bispectra and other models for the stable homotopy category.

Acknowledgments: JC and CM would like to thank Andrew Blumberg, Mike Mandell, and Randy
McCarthy for helpful conversations about this paper, and for general wisdom about trace methods.
KP was partially supported by NSF grant DMS-1810779 and the University of Kentucky Royster
Research Professorship. IZ was partially supported by NSF grrant DMS-1846767. The authors thank
Cornell University for hosting the initial meeting which led to this work.

2 Historical overview

Quillen defined the higher algebraic K-groups of a ring A as the homotopy groups

Kn(A) = πn(K0(A)×BGL(A)+)

of a space built out of the plus construction of the classifying space of the infinite general linear
group GL(A) = colimk GLk(A) [Qui73, Qui74]. Quillen’s definition sparked a revolution in the
conceptual understanding of algebraic K-theory, but concrete calculations, beyond his computation
of the K-theory of finite fields [Qui72], remain quite difficult.

The Dennis trace map has been one of the most fruitful tools for computations of higher algebraic
K-groups. It was developed to approximate algebraic K-theory by invariants that are easier to
compute.

2.1 Hochschild homology

The first construction of the Dennis trace occurs in unpublished work of Keith Dennis from the late
1970s. It is a natural homomorphism of graded abelian groups

trc : K∗(A) −→ HH∗(A) (2.1)

from the algebraic K-theory groups to the Hochschild homology groups of a ring A.
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The Hochschild homology groups HH∗(A) are defined as the homology groups of the cyclic
bar construction, BcyA. This is a simplicial abelian group with q-simplices Bcy

q := A⊗(q+1), and with
face maps di : Bcy

q A = A⊗(q+1) −→ A⊗q = Bcy
q−1A defined by

di(a0 ⊗ · · · ⊗ aq) =
{

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq for 0 ≤ i < q

aqa0 ⊗ · · · ⊗ aq−1 for i = q. (2.2)

The degeneracy maps include identity elements. The cylic bar construction can be constructed by
applying the functor A ⊗A⊗Aop − to the two-sided bar construction B(A, A, A). When the abelian
group underlying A is free, the two-sided bar construction is a projective resolution of A over the
enveloping algebra A ⊗ Aop, and so for such rings the Hochschild homology HH∗(A) agrees with
TorA⊗Aop

∗ (A, A).
In the case where A = Z[G] is a group ring, there is a canonical homomorphism from group

homology to Hochschild homology

H∗(BG;Z) −→ HH∗(Z[G])

defined on the bar construction for the group G by by

Z{BqG} = Z{Gq} −→ Z[G]⊗(q+1)

(g1, . . . , gq) 7−→ (g−1
q · · · g−1

1 )⊗ g1 ⊗ · · · ⊗ gq.

In particular, for G = GLn(A), we can compose with the canonical ring homomorphism Z[GLn(A)] −→
Mn(A) and the multitrace

tr : Mn(A)⊗(q+1) −→ A⊗(q+1)

g0 ⊗ · · · ⊗ gq 7−→
n∑

i0,...,iq=1
(g0)i0i1 ⊗ · · · ⊗ (gq)iqi0

to get a composite

H∗(BGLn(A);Z) −→ HH∗(Z[GLn(A)]) −→ HH∗(Mn(A)) tr−→ HH∗(A). (2.3)

Taking the colimit as n→∞ and then precomposing with the Hurewicz map

K∗(A) = π∗(BGL(A)+) −→ H∗(BGL(A)+;Z) ∼= H∗(BGL(A);Z)

gives the original construction of the Dennis trace map (2.1) in positive degrees.
In low degrees, there are concrete descriptions of the Dennis trace map. The Dennis trace on K0

is the map
trc : K0(A) −→ HH0(A) = A/[A, A]

that takes the class of a finitely generated projective A-module P to the trace of any idempotent
matrix E ∈Mn(A) presenting the module P . The Dennis trace on K1 is the map

trc : K1(A) = GL∞(A)/E(A) −→ HH1(A),

where GL∞(A) is the colimit of the general linear groups GLn(A) and E(A) is its commutator
subgroup, the group of elementary matrices, that takes the invertible matrix B to the Hochschild
chain given by the multitrace

tr(B−1 ⊗B) =
n∑

i,j=1
(B−1)ij ⊗Bji.

If A is commutative then there is an isomorphism from HH1(A) to the module of Kähler differentials
ΩA/Z (see [Wei94, Prop 9.2.2]), and along this isomorphism the class in K1 given by the unit a ∈ A

is sent to the logarithmic derivative da
a ∈ ΩA/Z.
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2.2 Topological Hochschild homology

Inspired by Goodwillie’s ideas and Waldhausen’s “brave new algebra” of ring spectra as arithmetic
objects, Bökstedt defined a lift of the Dennis trace of the form

trc : K(A) −→ THH(A). (2.4)

Now each of these terms is a spectrum, rather than a sequence of abelian groups, and THH is the
topological Hochschild homology of the ring or ring spectrum A. Essentially, THH is defined in
the same way as HH but with smash products ∧S over the sphere spectrum instead of tensor products
⊗Z. More precisely, for each ring spectrum A the spectrum THH(A) is defined to be the realization
of the cyclic bar construction

[q] 7−→ Bcy
q (A) = A∧(q+1), with face maps as in (2.2).

Bökstedt’s original definition is equivalent to this, but defines A∧(q+1) in a more elaborate way using
a homotopy colimit [Bök85a, Bök85b]. This was necessary at the time, because model categories and
∞-categories of spectra with well-behaved smash product had not been developed yet.

When A is an ordinary ring, the refined Dennis trace (2.4) can be constructed by a direct gen-
eralization of the formula (2.3). For ring spectra it is often more convenient to use the “inclusion
of endomorphisms" description from the introduction. See [BM20, BM12] for further discussion and
[DGM13] for a comparison of these two approaches. The latter approach has the advantage that
it generalizes to spectral categories, and therefore models the Dennis trace for stable ∞-categories
[BGT13].

The trace to THH already gives more information than Dennis’s original construction. For exam-
ple, when A = Z the Dennis trace map to THH is surjective on homotopy groups [Rog98]. Using
Bökstedt’s calculation

πn THH(Z) =


Z if n = 0
0 if n = 2k > 0
Z/k if n = 2k − 1,

this implies that Kn(Z) is nontrivial for n odd. On the other hand, the ordinary Hochschild homology
HH∗(Z) of the integers is concentrated in degree zero, so cannot detect K-theory classes in positive
degree.

These calculations use the Bökstedt spectral sequence

HH∗(H∗(A;Fp)) =⇒ H∗(THH(A);Fp),

which interpolates between ordinary Hochschild homology and THH of ring spectra, and in the case
of discrete rings gives a direct route to computing π∗ THH(A).

2.3 Further refinements

At the Hochschild homology level, Connes showed that the natural cyclic permutations on the
Hochschild complex come from an action of the circle group S1; taking homology with respect to the
circle action defines a new theory called cyclic homology, which is a non-commutative version of de
Rham cohomology [Con85, LQ84, Tsy83, HKR62]. Cyclic homology HC(A) can be identified with
the homotopy orbits of the S1-action on the Hochschild complex, whereas the homotopy fixed points
define a variant called negative cyclic homology HN(A) [Hoy18, Kas87, Jon87]:

HC(A) ∼= (BcyA)hS1 HN(A) ∼= (BcyA)hS1
.

The Dennis trace can be lifted to a map from K-theory to negative cyclic homology,

K∗(A) −→ HN∗(A). (2.5)

It is helpful to think of this map as a generalization of the Chern character, see e.g. [Wei13, V.11].
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At the THH level, the analogous notion is topological cyclic homology (TC), originally worked
out by Bökstedt-Hsiang-Madsen [BHM93, Mad94]. It is not the homotopy S1-fixed points of THH,
but instead the homotopy limit of the fixed points THHCn under certain actions by cyclic groups Cn.
The Dennis trace to THH can be shown to factor through these fixed points, giving the cyclotomic
trace

trc : K(A) −→ TC(A).
By its construction, there is a forgetful map TC→ THH along which this cyclotomic trace becomes
the Dennis trace.

The reason for this divergence between the definitions of HN and of TC is purely computational.
Phrasing the results in modern language, Goodwillie showed that if A → B is a map of connective
ring spectra such that π0A → π0B has nilpotent kernel, then the Dennis trace induces a homotopy
cartesian square after rationalization [Goo86]

K(A)Q HN(AQ)

K(B)Q HN(BQ).

trc

trc

(2.6)

The integral version of this theorem is due to Dundas-Goodwillie-McCarthy [Dun97, McC97, DGM13]:
under the same hypotheses, the square induced by the cyclotomic trace

K(A) TC(A)

K(B) TC(B)

trc

trc

(2.7)

is homotopy cartesian. These results are important for computations since they allow us to transfer
computations from one ring to all other “nearby” rings. See also [Bei14, CMM] for more recent results
of Dundas-Goodwillie-McCarthy type.

It’s worth noting that while the original treatment of cyclotomic spectra and the cyclotomic trace
required deep technical use of equivariant stable homotopy theory and the particular properties of
Bökstedt’s model for THH (see e.g. [Mad94, Rmk. 2.5.9]), in recent years alternative foundations
have become available. For example, the Hill-Hopkins-Ravenel norm allows a more direct use of the
cyclic bar construction in building the cyclotomic structure on THH [ABG+18, DMP+19]. Nikolaus
and Scholze have also given a reformulation of a cyclotomic spectrum as an S1-spectrum X equipped
with S1-equivariant maps X −→ XtCp from X to the Tate construction (the homotopy cofiber of
the norm map XhCp → XhCp) [NS18, HN19]. Their new definition is implemented at the level of
∞-categories and thus provides a model-independent construction of the cyclotomic trace. Other
recent work includes an algebreo-geometric interpretation of the cyclotomic trace [AMGR17].

2.4 A few classical applications

The cyclotomic trace map is the source of a great deal of computational knowledge about algebraic
K-theory, in no small part because of the Dundas-Goodwillie-McCarthy theorem (2.7).

The original paper on the cyclotomic trace [BHM93] describes the TC of spherical groups rings
by constructing a homotopy cartesian square

TC(S[ΩX])∧
p ΣΣ∞

+ ((LX)hS1)∧
p

Σ∞
+ LX∧

p Σ∞
+ LX∧

p

Trf
id−∆p

where ∆p is the action of the p-th power map z 7→ zp of the circle on the free loop space LX, and
the right vertical map is the S1-transfer map. In particular, the topological cyclic homology of the
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sphere spectrum splits as
TC(S)∧

p ≃ S∧
p ∨ Σ(CP ∞

−1)∧
p ,

where the Thom spectrum CP ∞
−1 may be identified with the homotopy fiber of the transfer map

ΣΣ∞
+ CP ∞ → S, and features prominently in the solution of Mumford’s conjecture on the stable

cohomology of mapping class groups [MW07].
Using Waldhausen’s splitting K(S[ΩX]) ≃ Σ∞

+ X ∨Wh(X) into the stable homotopy type of X
and the Whitehead spectrum of X, Bökstedt-Hsiang-Madsen used the cyclotomic trace to nearly
describe Wh(∗) at odd regular primes p, a task later completed by Rognes [Rog03], and proved the
K-theoretic analog of the Novikov conjecture: the assembly map K(Z)∧G+ −→ K(Z[G]) is a rational
equivalence for a large class of groups. Along with the equivalence of relative theories provided by
the homotopy cartesian square (2.7) for the augmentation map S[ΩX] −→ S in the case of a simply
connected space X [BCC+96], these results have concrete geometric applications in pseudoisotopy
theory. Recent work of Blumberg-Mandell [BM19] expands on these results to give a p-local splitting
of the algebraic K-groups K∗(S) into the homotopy groups of known entities at all odd primes p.

The cyclotomic trace has also been used to compute the algebraic K-theory of discrete rings.
Hesselholt and Madsen showed that [HM97b]

TC(Fp; p) ≃ HZp ∨ Σ−1HZp,

which agrees with Quillen’s computation of K(Fp)∧
p in non-negative degrees. This agreement holds

more generally for any perfect field k of positive characteristic, and it then follows from the Dundas-
Goodwillie-McCarthy theorem (2.7) that for A a finitely generated algebra over the p-typical Witt
vectors W (k), the cyclotomic trace induces an equivalence

trc : K(A)∧
p

∼−→ τ≥0 TC(A)∧
p

from p-complete K-theory to the connective cover of the p-completion of TC. This comparison result
was used by Hesselholt-Madsen to compute the K-theory of complete discrete valuation fields of
characteristic zero with perfect residue field k, thereby verifying the Quillen-Lichtenbaum conjecture
in these cases [HM03]. For example, if F is a finite extension of Qp, then there is an isomorphism

Kn(F ;Z/m) ∼= Kn(k;Z/m)⊕Kn−1(k;Z/m)

of K-theory groups with mod m coefficients when m is prime to p.
Trace methods have effectively computed K-theory for a variety of other discrete rings [HM97a,

Hes14, HLL20, Spe20] and ring spectra, such as the connective complex K-theory spectrum ku and
its variants [AR02, AR12a, AR12b].

3 Spectral categories

We now begin the foundational material on the Dennis trace. We discuss our conventions for spectral
categories, including the important example of the spectral category of modules over a ring spectrum,
and define THH of spectral categories.

3.1 Basic definitions

Definition 3.1. A spectral category C is a category enriched in the symmetric monoidal category
of orthogonal spectra [MMSS01]. In more detail, this means that for every ordered pair of objects
(a, b) of C, there is a spectrum C(a, b), which is thought of as the spectrum of maps from a to b, as
well as a unit map S→ C(a, a) from the sphere spectrum for every object a, and composition maps

C(a, b) ∧ C(b, c) −→ C(a, c)

that are strictly associative and unital. A spectral category C is pointwise cofibrant if every
mapping spectrum C(a, b) is cofibrant in the stable model structure on orthogonal spectra [MMSS01,
§9].
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A functor of spectral categories F : C −→ D consists of a function from the objects of C to
the objects of D and maps of spectra F : C(a, b) −→ D(Fa, Fb) that respect composition and the
unit maps. We call F a Dwyer–Kan embedding if each of these maps of spectra is an equivalence.
As a special case, if F is the identity on objects and an equivalence on each mapping spectrum we
call it a pointwise equivalence.

Throughout, we assume that spectral categories are small, meaning that they have a set of objects.
Remark 3.2. Our convention that C(a, b) is an orthogonal spectrum imposes no essential restriction.
Any category enriched in symmetric or EKMM spectra can be turned into an orthogonal spectral
category using the symmetric monoidal Quillen equivalences (P,U) and (N,N#) from [MMSS01]
and [MM02], respectively. Going back and forth only changes the spectral category by a pointwise
equivalence. See 3.7 for more details.
Example 3.3.

i. Every (orthogonal) ring spectrum A can be considered as a spectral category with one object.
ii. If C0 is a pointed category, then there is a spectral category Σ∞C0 with mapping spectra given

by the suspension spectra Σ∞C0(a, b) and composition arising from C0.
Definition 3.4. For a spectral category C, a base category is a pair (C0, F : Σ∞C0 → C) where
C0 is an ordinary category and F is a spectral functor that is the identity when restricted to object
sets. When the functor is clear from context we omit it from the notation.

We can form such a base category C0 by restricting each mapping spectrum to level zero and
forgetting the topology. There are also examples which do not arise in this way, such as those in §3.2.

Many of our techniques will require the use of pointwise cofibrant spectral categories. Spectral
categories can always be replaced with equivalent pointwise cofibrant spectral categories using the
model structure from [SS03, 6.1, 6.3].
Theorem 3.5. There is a pointwise cofibrant replacement functor Q and a pointwise fibrant replace-
ment functor R on spectral categories. In particular,

Q : SpCat→ SpCat

is a functor equipped with a natural transformation q : Q ⇒ idSpCat such that qC is a pointwise
equivalence for every spectral category C.
Definition 3.6. Let C be a spectral category. We define the topological Hochschild homology
or cyclic bar construction THH(C) of C to be the geometric realization of the simplicial spectrum
Bcy

• (C;X) given by

Bcy
n (C) :=

∨
c0,...,cn

C(cn, c0) ∧ C(c0, c1) ∧ C(c1, c2) ∧ · · · ∧ C(cn−1, cn).

Face and degeneracy maps parallel those near the beginning of Section 2.1.

When C is pointwise cofibrant, our definition is equivalent to the previous definitions of THH
in the literature, e.g. [Bök85a, BM20, DGM13, NS18]. We can always arrange that C is pointwise
cofibrant by using the cofibrant approximation functor from Theorem 3.5.

3.2 The spectral category of modules over a ring spectrum A

One example of a spectral category is the category MA of A-module spectra over a ring spectrum
A, with right-derived mapping spectra between them. We proceed with a precise definition, which
plays orthogonal spectra and EKMM spectra off of each other. For clarity, we write SpO for the
category of orthogonal spectra, and SpEKMM for S-modules. Recall that the two models of spectra
are related by a symmetric monoidal Quillen equivalence [MM02, Ch. 1]

N : SpO ⇄ SpEKMM :N#.



3 Spectral categories 35

Remark 3.7. As a technical point, the adjunction (N,N#) is with respect to the positive stable model
structure on orthogonal spectra [MMSS01, §14], not the usual stable model structure. However, if
X is cofibrant in the stable model structure then F1S1 ∧X is cofibrant in the positive stable model
structure, where F1S1 is the free orthogonal spectrum on S1 at spectrum level one. So we will
continue using the term “cofibrant” to refer to the stable model structure. Any time we need positive
cofibrancy, we simply smash with F1S1.
Definition 3.8. Let A be an orthogonal ring spectrum that is pointwise cofibrant, meaning that
the underlying orthogonal spectrum is cofibrant. We define the category of A-modules MA to have
as objects the cofibrant NA-module spectra (in SpEKMM ). The mapping spectra MA (−,−) are
obtained by applying the lax symmetric monoidal functor N# to the mapping spectra FNA(−,−) of
NA-modules. Thus the objects of Ma are EKMM-spectra, and the mapping spaces are orthogonal
spectra.

Note that every mapping spectrum in MA has the expected homotopy type (i.e. is equivalent
to the right-derived mapping spectrum) because EKMM spectra form a closed symmetric monoidal
model category in which every object is fibrant. We get more precise control over these mapping
spectra by observing that a map of orthogonal spectra

X −→ MA (P, P ′) = N#FNA(P, P ′)

corresponds to a map of EKMM spectra P ∧ NX → P ′ that is NA-linear. This is a choice we make
to simplify computations, but other options are possible.

By a Yoneda lemma argument, MA receives a spectral functor from the more obvious category of
cofibrant orthogonal A-module spectra and A-linear maps.
Lemma 3.9. There is a functor of spectral categories to MA , from the category whose objects are cofi-
brant orthogonal A-module spectra with mapping spectra FA(−,−). The functor sends each cofibrant
A-module M to the cofibrant NA-module NF1S1 ∧ NM .

Similarly, the category MA receives a spectral functor from A itself, by sending the single object
to the NA-module NF1S1 ∧ NA.
Lemma 3.10. If A is underlying cofibrant then this functor A→ MA is a Dwyer-Kan embedding.

Proof. It suffices to check that one map of spectra is an equivalence: the composite

A→ N#FNA(N(F1S1 ∧ A),N(F1S1 ∧ A)) ∼−→ N#FNA(N(F1S1 ∧ A),NA). (3.11)

The representable functor classified by the right-hand side corresponds to NA-linear maps

NF1S1 ∧ NA ∧ N(−)→ NA

which simplifies to S-linear maps
NF1S1 ∧ N(−)→ NA

which is also represented by
FS(F1S1,N#NA) ∼← N#NA

∼← A,

the homs being taken in orthogonal spectra, and using that A → N#NA is an equivalence [MM02,
3.5]. Along these simplifications of representable functors, the original map (3.11), corresponding to
the right A-action, goes to the class of the identity map A→ A. In other words, we have constructed
a commutative diagram

A

id
��

// N#FNA(N(F1S1 ∧ A),N(F1S1 ∧ A)) ∼ // N#FNA(N(F1S1 ∧ A),NA)
OO

∼=
��

A
∼ // N#NA

∼ // FS(F1S1,N#NA)

whose top row is the map (3.11), which is thus an equivalence.
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Perfect modules also form a spectral category.
Example 3.12. For a ring spectrum A, the category of perfect A-modules PA is the full sub-
category of MA spanned by the modules that are retracts in the homotopy category of finite cell
NA-modules. The inclusion A→ MA factors through PA .

A fundamental property of THH is Morita invariance:
Theorem 3.13. The canonical inclusion functor A −→ PA induces an equivalence

THH(A) ∼−→ THH( PA ).

For a proof, see [CP19, 5.9] or [BM12, 5.12]. The essential observations are the Morita equivalence
of A and PA and the cyclic invariance of THH.

Recall that for ring spectra A and B, a (B, A)-bimodule is a module over B∧Aop, or equivalently
a spectrum M with commuting left and right actions by B and A, respectively. Like the proof of
Lemma 3.10, the proofs of Lemmas 3.14 through 3.16 are consequences of the Yoneda lemma through
comparisons of associated representable functors.
Lemma 3.14. Let A and B be orthogonal ring spectra. Then for any cofibrant (B, A)-bimodule M ,
the map induced by NM ∧NA − induces a well-defined spectral functor

MA → MB .

Let A and B be orthogonal ring spectra and let M a cofibrant (B, A)-bimodule. Then

MB (NB,NF1S1 ∧ NM)
is also a (B, A)-bimodule using the composition in the spectral category MB and the spectral functors
from Lemmas 3.9 and 3.14. Removing the technical decorations, this is just the fact that maps
B →M can be pre-composed by the B-action on B or post-composed with the A-action on M . We
abbreviate this bimodule as MB

M , which is consistent with [CLM+, Example 4.5].
Lemma 3.15. For each a cofibrant (B, A)-bimodule M , there is an equivalence of (B, A)-bimodules
M → MB

M , given by the map whose adjoint is the B-action on M . For each map of (B, A)-bimodules
the resulting square

M

��

// N

��

MB
M

// MB
N

commutes.
Lemma 3.16. For each cofibrant (C, B)-bimodule N and cofibrant (B, A)-bimodule M the triangle

N ∧B M

�� ((

MC
N ∧ MB MB

M
// MC

N∧BM

of (C, A)-bimodules commutes.

4 The spectral category of C-valued diagrams

Let C0 be a category and I a small category. Define Fun(I,C0) to be the category whose objects are
functors I → C0 and whose morphisms are natural transformations.

In this section, we consider a generalization of this where C0 is replaced by a spectral category C,
but I continues to be an ordinary category. The construction we are after is present in [MS02, 2.4]
and [BM20, 2.3], but we discuss it in detail here since it is the essential technical ingredient we need
in Section 5.2 to form the S•-construction of a spectral Waldhausen category.

We first summarize the main properties of the construction.
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Theorem 4.1. If C is a spectral category with base category C0 (Definition 3.4), and I is an ordinary
category, there is a spectral category Fun(I,C) with base category Fun(I,C0). The construction defines
a functor

Fun(−,−) : Catop × SpCat −→ SpCat
satisfying the following three conditions.

i. There is a pointwise weak equivalence C
∼−→ Fun(∗,C) natural in C.

ii. When I = I0 × {0 → · · · → k} then ϕ : I → C0 is composed of diagrams ϕi : I0 → C0 for
0 ≤ i ≤ k with natural transformations between them. For two diagrams ϕ, γ these natural
transformations give a zig-zag

Fun(I0,C)(ϕ0, γ0)
((

Fun(I0,C)(ϕ1, γ1)
vv

((

· · · Fun(I0,C)(ϕk, γk)

vvFun(I0,C)(ϕ0, γ1) · · ·

The maps
Fun(I,C)(ϕ, γ)→ Fun(I0,C)(ϕi, γi)

extend to an equivalence from Fun(I,C)(ϕ, γ) to the homotopy limit of this zig-zag. We call this
equivalence the kth Segal map.
More generally, the restriction of Fun(I,C)(ϕ, γ) to the subcategory I0 × {i→ · · · → j} for any
0 ≤ i ≤ j ≤ k corresponds to the restriction of this zig-zag to the smaller zig-zag from i to j.

iii. If I ⊂ J is a full subcategory and every tuple of arrows passing through J − I either begins or
ends in J − I, then the spectral functor

Fun(J,C) −→ Fun(I,C)
induces isomorphisms on mapping spectra between diagrams J → C0 that send J−I to ∗ ∈ obC0.

The theorem is proved over the remainder of this section, after which we briefly discuss the 2-
functoriality of Fun(I,C) in the variable C and the failure of 2-functoriality in the variable I.

4.1 Construction

The construction of Fun(I,C) is by the Moore end, a variant of the homotopy end of two diagrams
that has previously been considered in [MS02, §2] and [BM20, §2.3]. Like the Moore path space, it
is constructed so that it forms a spectral category whose composition maps are associative, not just
associative up to homotopy.

We describe the construction in stages. First recall that given two diagrams ϕ, γ : I ⇒ C0, the
end is defined as the equalizer of orthogonal spectra

C(ϕ, γ) := eq
( ∏

i0∈ob I

C(ϕ(i0), γ(i0))⇒
∏

i0−→i1

C(ϕ(i0), γ(i1))
)

. (4.2)

The construction of the end for all pairs of diagrams I −→ C0 gives a spectral category with base
category Fun(I,C0). This defines an extension of Fun to a functor

Fun : Catop × SpCat −→ SpCat
and the natural map C −→ Fun(∗,C) is an isomorphism of spectral categories.

The end, unfortunately, does not suit our purposes, because we have no control over its homotopy
type. We could fix this using cofibrant replacements, but that turns out to be unsatisfactory once
we start changing I. So we pass instead to the homotopy end.

Given two diagrams in the underlying category ϕ, γ : I ⇒ C0, the equalizer diagram in (4.2) is a
truncation of the cobar construction, a cosimplicial spectrum that at level n is given by

[n] 7→
∏

i0−→···−→in

C(ϕ(i0), γ(in)),
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where the product runs over all composable n-tuples of arrows in I. The coface and codegeneracy
maps are induced by the inclusion of identity morphisms and composition in the category I within
the indexing for the product (dual to the usual maps that define the categorical bar construction).
The homotopy end hC(ϕ, γ) is defined to be the totalization of this cobar construction. See, for
example, [Rie14, Chapter 4].

As a simple example, if I = {0 → 1} is a single arrow, then ϕ and γ can be described as two
arrows a0 → a1 and b0 → b1 in C0. The spectrum of maps from the arrow a0 → a1 to the arrow
b0 → b1 given by the strict end is the pullback

C(a0, b0)×C(a0,b1) C(a1, b1),

while that given by the homotopy end is the homotopy pullback. Each point in the homotopy end
can be understood as a pair of vertical arrows as in the diagram

a0

��

// a1

��

b0 // b1,

along with the data of a homotopy between the two routes around the square. It is easier to control
the homotopy type of the homotopy end, but as a tradeoff it introduces a new problem: these maps
cannot be composed in a strictly associative way. Stacking two of the above squares, we can compose
the vertical maps and concatenate the homotopies, but for reasons of path parametrization this is not
associative, only associative up to homotopy. The homotopy end therefore does not define a spectral
category.

The Moore end is now introduced to fix this issue in exactly the same way that the Moore loop
space makes ΩX strictly associative: by letting the “length” of the homotopy vary. To be precise,
the collapse map of cosimplicial spaces ∆• −→ ∗ induces a canonical map from the strict end to the
homotopy end

ι : C(ϕ, γ) −→ hC(ϕ, γ).
The Moore end of ϕ and γ is defined as the pushout of orthogonal spectra

C(ϕ, γ) ∧ (0,∞)+

��

ι×id
// hC(ϕ, γ) ∧ (0,∞)+

��

C(ϕ, γ) ∧ [0,∞)+ // hMC(ϕ, γ).

Note that hMC(ϕ, γ) may be identified (levelwise) with a subset of hC(ϕ, γ) ∧ [0,∞)+, but it does
not have the subspace topology. The deformation retract of [0,∞) onto {1} induces a homotopy
equivalence between the Moore end and the homotopy end, hMC(ϕ, γ) ≃ hC(ϕ, γ).
Definition 4.3. The mapping spectrum Fun(I,C)(ϕ, γ) between two diagrams ϕ, γ : I −→ C0 is
defined to be the Moore end hMC(ϕ, γ).

4.2 Composition

We now construct the composition maps for the mapping spectra in Fun(I,C). For each real number
p ≥ 0, let ∆n

p denote the n-simplex scaled by p:

∆n
p =

{
(t0, . . . , tn) ∈ Rn+1 : ti ≥ 0 ∀i,

∑
i

ti = p

}
.

We define maps ∆k
p ×∆l

q −→ ∆k+l
p+q by the rule

(s0, . . . , sk), (t0, . . . , tl) 7→ (s0, . . . , sk−1, sk + t0, t1, . . . , tl).
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Fixing p and q but letting k and l vary over all pairs summing to n, these maps are closed embeddings
that jointly cover ∆n

p+q and whose overlaps are generated by face maps, allowing us to express ∆n
p+q

as the coequalizer of spaces ∐
k+l=n−1

∆k
p ×∆l

q ⇒
∐

k+l=n

∆k
p ×∆l

q → ∆n
p+q.

This decomposition is called the prismatic subdivision.
Given three diagrams ϕ, γ, η : I → C0, we define a composition map

hC(ϕ, γ) ∧ hC(γ, η) ∧ (0,∞)2
+ −→ hC(ϕ, η) ∧ (0,∞)+ (4.4)

that extends continuously to the rest of the Moore end. The essential idea is this: for each value of
p and q, the two totalizations on the left give systems of maps

∆k
p −→ C(ϕ(i0), γ(ik))

∆l
q −→ C(γ(j0), η(jl)).

For each n-tuple i0 −→ · · · −→ in we construct a map

∆n
p+q −→ C(ϕ(i0), η(in))

by splitting up ∆n
p+q using the prismatic decomposition, and on each term of the form ∆k

p × ∆l
q,

taking the product map and applying the composition in C

∆k
p ×∆l

q −→ C(ϕ(i0), γ(ik)) ∧ C(γ(ik), η(in)) −→ C(ϕ(i0), η(in)). (4.5)

Granting that this is well-defined and extends to a continuous map (Section 4.3) on the Moore
end, it is not hard to check that it is strictly unital and associative. For associativity we take four
diagrams ϕ, γ, η, ι : I → C0, three real numbers p, q, r > 0, and three systems of maps

∆k
p −→ C(ϕ(i0), γ(ik))

∆l
q −→ C(γ(i0), η(il))

∆m
r −→ C(η(i0), ι(im)).

For each n-tuple i0 −→ · · · −→ in, we check that the two maps we can construct

∆n
p+q+r −→ C(ϕ(i0), ι(in))

agree, using the fact that the two ways of composing prismatic subdivisions lead to the same three-fold
subdivision formula

(s0, . . . , sk), (t0, . . . , tl), (u0, . . . , um) 7→ (s0, . . . , sk + t0, t1, . . . , tl + u0, . . . , um).

One can check that the construction of the spectral category Fun(I,C) is appropriately functorial
in C and I; we omit the details.

4.3 Continuity of the composition maps

This is the most demanding part of the proof of Theorem 4.1. The construction in (4.5) defines a
continuous map into the image of the injective map

(0,∞)2
+ ∧

∏
[n]

F

∆n
+,

∏
i0−→···−→in

C(ϕ(i0), η(in))

→
(0,∞)2

+ ∧
∏
[n]

∏
k+l=n

F

(∆k ×∆l)+,
∏

i0−→···−→in

C(ϕ(i0), η(in))

 .

(4.6)
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To see that the maps in (4.5) assemble to a continuous map on the source of (4.6) it suffices to show
that (4.6) is an inclusion (i.e. a homeomorphism onto its image). One may then check that, as n
varies, the lifts to the source of (4.6) glue together to give a well-defined map of totalizations.

We prove that (4.6) is an inclusion by showing it is an equalizer of two maps that restrict the
∆k × ∆l to certain faces. We do this by taking the prismatic subdivision with p = q = 1, whose
coequalizer we call C, and taking maps out to get an equalizer system that is not quite the same
as (4.6). We use [Str09, 5.3] to argue that smashing with (0,∞)2

+ preserves the equalizer. But this
second equalizer system is homeomorphic to (4.6), using the evident homeomorphism πp,q : C

∼=−→ ∆n
p+q

that varies continuously in p and q.
We must also prove that the multiplication is continuous when one factor is in the strict end times

[0,∞) and the other is in the homotopy end times (0,∞). When p = 0 and q > 0, the maps of the
prismatic subdivision still make sense, but they do not form a coequalizer system of the form∐

k+l=n−1
∆k ×∆l ⇒

∐
k+l=n

∆k ×∆l → ∆n
p+q. (4.7)

In other words, letting C denote the coequalizer of (4.7) and πp,q the induced map

πp,q : C → ∆n
p+q,

then πp,q is a quotient map but not a homeomorphism. As a result, the following analog of (4.6)
(products suppressed) is not an equalizer of the two maps that restrict ∆k×∆l to the relevant faces.

[0,∞)+ ∧ (0,∞)+ ∧ F
(
∆n

+, A
)

// [0,∞)+ ∧ (0,∞)+ ∧
∏

k+l=n

F
(
(∆k ×∆l)+, A

)
, (4.8)

However, our composition rule still lifts to the source of (4.8) as a map of sets. So it suffices to prove
that (4.8) is an inclusion. This will follow if we can show that the map

[0,∞)+ ∧ (0,∞)+ ∧ F
(
∆n

+, A
)
−→ [0,∞)+ ∧ (0,∞)+ ∧ F (C+, A)

that sends (p, q, f : ∆n −→ A) to (p, q, f ◦πp,q : C −→ A) is an inclusion. It suffices to prove this with
Cartesian products inside the category of topological spaces because k(−) preserves closed inclusions
by a quick diagram-chase.

Consider the map of Cartesian products

[0,∞)× (0,∞)× F
(
∆n

+, A
)
−→ [0,∞)× (0,∞)× F (C+, A) (4.9)

with formula (p, q, f : ∆n −→ A) 7→ (p, q, f ◦ πp,q : C −→ A). It suffices to show that the image of
the basis element U × V × {Ki −→ Wi} is relatively open in the image. Take p0 ∈ U , q0 ∈ V ,
f : Ki −→ Wi. It suffices to find a basis element in the target containing the point (p0, q0, f ◦ πp0,q0),
whose intersection with the image is completely contained in the image of U × V × {Ki −→ Wi}.

To do this, note that f(Ki) ⊆ Wi implies that f ◦ πp0,q0(π−1
p0,q0(Ki)) ⊆ Wi. In fact, we can find a

small open interval of values of p and q about p0 and q0 such that for p and q in this interval,

f ◦ πp0,q0(π−1
p,q (Ki)) ⊆ Wi.

This is because the set of maps g : C −→ ∆n such that g−1(Ki) ⊆ (f ◦ πp0,q0)−1(Wi) is equal to the
set of maps such that g sends the compact set C − (f ◦ πp0,q0)−1(Wi) to the open set ∆n−Ki, which
is open in the compact-open topology.

Shrinking these intervals slightly to closed intervals I and J , the map I × J × C → ∆n given by
(p, q, x) 7→ πp,q(x) is continuous, therefore the inverse image of Ki is closed—and thus compact. Its
projection to C is then also compact, as is the union of π−1

p,q (Ki) over p ∈ I and q ∈ J is compact.
Call this union Li. The above implies that

f ◦ πp0,q0(Li) ⊆ Wi.
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Shrinking one last time to open intervals I ′ and J ′ about p0 and q0, respectively, consider the open
set I ′ × J ′ × {Li −→ Wi} in the target of (4.9). Every triple in this set of the form (p, q, f ′ ◦ πp,q)
has the property that

f ′ ◦ πp,q(Li) ⊆ Wi.

Since π−1
p,q (Ki) ⊆ Li, we deduce that

f ′(Ki) ⊆ Wi.

So the intersection of I ′×J ′×{Li −→ Wi} with the image of (4.9) lies in the image of U×V ×{Ki −→
Wi}. Furthermore this basic open set contains the original point (p0, q0, f ◦ πp0,q0) by construction.
Repeating for each i and taking the intersection, we get a basis element in the target of (4.9) whose
intersection with the image is contained in the source basis element, and contains the prescribed
point. This proves that (4.9), and therefore (4.8), is an inclusion.

By a slight variant of this argument (extending to an infinite product by only ever imposing
conditions on finitely many of the factors), we can also take a product over n before smashing with
[0,∞)+ ∧ (0,∞)+, giving an inclusion

[0,∞)+ ∧ (0,∞)+ ∧
∏
n

F
(
∆n

+, An

)
// [0,∞)+ ∧ (0,∞)+ ∧

∏
n

∏
k+l=n

F
(
(∆k ×∆l)+, An

)
.

(4.10)
This concludes the most technical part of the proof.

4.4 Proof that the three statements in Theorem 4.1 hold

The totalization defining the homotopy end will be Reedy fibrant, and therefore preserve weak equiv-
alences, when the terms of the product (the mapping spectra of C) are all fibrant. Alternatively, it
also has the correct homotopy type if the category I is finite, in the sense that its classifying space
is a finite CW complex. So if I is finite, we proceed; otherwise, we first assume we have taken a
pointwise fibrant replacement of C using Theorem 3.5 before building the Moore end.

i. When I = ∗, the strict equalizer is just C, and its inclusion into the homotopy equalizer is an
equivalence because the cosimplicial object is constant.

ii. It suffices to consider the homotopy end. When I = I0 × [k], this is the totalization of the
diagonal of the bicosimplicial space

[m, n] 7→
∏

i0−→···−→im∈I0
j0−→···−→jn∈[k]

C(ϕ(i0, j0), γ(im, jn)).

It is standard that this is homeomorphic to the double totalization, which is the homotopy end
along [k] of the homotopy end along I0. Therefore without loss of generality I0 = ∗. The zig-zag
description is then fairly standard, see e.g. [BM20, §2.4]. One way to prove it is to expand to a
larger diagram with equivalent homotopy limit; for example, when k = 2 the larger diagram is
as follows:

C(ϕ(0), γ(0))
))

C(ϕ(1), γ(1))
uu ))

C(ϕ(2), γ(2))
uu

C(ϕ(0), γ(1))
))

C(ϕ(1), γ(2))
uu

C(ϕ(0), γ(2))

We model this homotopy limit as maps out of a cofibrant replacement of the trivial diagram ∗
sending each (i, j) to ∆j−i, and face maps between them. Using this model, one can check that
there is a homeomorphism from the homotopy limit to the desired homotopy end.

iii. The given condition implies that on two diagrams ϕ and γ sending every object of J − I to ∗,
the map of cosimplicial objects induced by I → J is a product of identity maps and zero maps,
hence is an isomorphism. It therefore induces isomorphisms on the homotopy end and the strict
end, and hence an isomorphism on the Moore end as well.
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4.5 2-functoriality

To conclude this section we record the behavior of the Moore end with respect to natural transfor-
mations. Given two morphisms F, G : (C,C0) ⇒ (D,D0) of spectral categories equipped with base
categories, we define a natural transformation η : F ⇒ G to be a natural transformation of the
underlying functors C0 → D0, subject to the condition that the following square commutes for all
objects a and b in C

C(a, b)

G
��

F // D(Fa, Fb)
η(b)◦−
��

D(Ga, Gb)
−◦η(a)

// D(Fa, Gb).

These make the category SpCat of pairs (C,C0) into a 2-category.
The category of diagrams construction Fun(I,C0) defines a 2-functor Catop × Cat −→ Cat, in

other words it respects ordinary natural transformations in both variables. Therefore the Moore
end will define a 2-functor if and only if these natural transformations also respect the spectral
enrichments. However, this is only true in the C variable, and not in the I-variable:
Proposition 4.11. The Moore end of Theorem 4.1 defines a 2-functor

Fun(−,−) : Catop × SpCat −→ SpCat

if Cat is given the trivial 2-category structure with only identity natural transformations.

The proof is direct and will be omitted.
Although the Moore end fails to preserve natural transformations in the first variable, it does

preserve them up to homotopy. To see this, let α, β : I ⇒ J be a pair of functors of small categories,
and let h : α⇒ β be a natural transformation. Composing with h defines maps

Fun(I,C)(ϕ, γ ◦ α) h◦−
// Fun(I,C)(ϕ, γ ◦ β) (4.12)

for each ϕ : I → C0 and γ : J → C0. The failure of the enriched naturality condition then becomes the
following statement: these maps commute with the left action of Fun(I,C)(−, ϕ) but fail to commute
with the right action of Fun(J,C)(γ,−).

However, we can thicken these spectra so that the map does commute with the right action. Let
[1] denote the poset category {0 < 1}, let H : [1]× I → J denote the functor encoding α, β, and h,
and let c : [1] × I → I denote the projection to I. Then the canonical replacement of the map
(4.12) is the zig-zag

Fun(I,C)(ϕ, γ ◦ α) Fun([1]× I,C)(ϕ ◦ c, γ ◦H)∼oo // Fun(I,C)(ϕ, γ ◦ β)

where the maps restrict along the inclusions of {0} × I and {1} × I into [1]× I.
Lemma 4.13. For each ϕ : I → C0, the two maps of the canonical replacement each commute with
the right Fun(J,C)-action. Furthermore the diagram of spectra

Fun([1]× I,C)(ϕ ◦ c, γ ◦H)
∼
�� **

Fun(I,C)(ϕ, γ ◦ α) h◦−
// Fun(I,C)(ϕ, γ ◦ β)

commutes up to a canonical homotopy.

Proof. The maps in the canonical replacement arise from morphisms of spectral categories, hence
commute with the right Fun(J,C)-actions. By Theorem 4.1(ii) the first Segal map gives an equivalence
from Fun([1]× I,C)(ϕ ◦ c, γ ◦H) into the homotopy limit of the zig-zag

Fun(I,C)(ϕ, γ ◦ α) h◦−
// Fun(I,C)(ϕ, γ ◦ β) Fun(I,C)(ϕ, γ ◦ β).=oo
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Along this equivalence, the map to Fun(I,C)(ϕ, γ ◦ α) is the restriction to the first term and the
map to Fun(I,C)(ϕ, γ ◦ β) is the restriction to the last term. The homotopy limit then provides the
canonical homotopy.

5 Spectral Waldhausen categories and the S•-construction

5.1 Spectral Waldhausen categories

We begin by defining the notion of a Waldhausen category with a compatible spectral enrichment—
these are the input data for our version of the Dennis trace constructed in §7. Recall that a Wald-
hausen category is a category C0 equipped with subcategories of cofibrations and weak equivalences
such that

i. every isomorphism is both a cofibration and a weak equivalence,
ii. there is a zero object ∗ and every object is cofibrant,

iii. C0 has all pushouts along cofibrations (homotopy pushouts),
iv. the pushout of a cofibration is a cofibration, and
v. a weak equivalence of homotopy pushout diagrams induces a weak equivalence of pushouts.

An exact functor C0 → D0 is a functor preserving the zero object, cofibrations, weak equivalences,
and pushouts along cofibrations.
Definition 5.1. A spectral Waldhausen category is a spectral category C along with a base
category C0 that is equipped with a Waldhausen category structure, subject to the following three
conditions.

i. The zero object of C0 is also a zero object for C, in the sense that C(0,−) and C(−, 0) are
contractible.

ii. Every weak equivalence c
∼−→ c′ in C0 induces stable equivalences

C(c′, d) ∼−→ C(c, d), C(d, c) ∼−→ C(d, c′).

iii. For every pushout square in C0 along a cofibration

a

��

� � // b

��

c �
�

// d

and object e, the resulting two squares of spectra

C(a, e)
OO

oo C(b, e)
OO

C(c, e) oo C(d, e)

C(e, a)

��

// C(e, b)

��

C(e, c) // C(e, d)

are homotopy pullback squares.

Let SpWaldCat be the category whose objects are spectral Waldhausen categories (C,C0). When
it is clear from context, we omit C0 from the notation. A morphism (C,C0) −→ (D,D0) consists of
an exact functor F0 : C0 −→ D0 and a spectral functor F : C −→ D such that the diagram

Σ∞C0
Σ∞F0 //

��

Σ∞D0

��

C
F // D

commutes.
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Example 5.2. The spectral categories PA of perfect A-modules and MA of all A-modules are both
spectral Waldhausen categories. We check conditions inside MA ; the proof for PA works analogously.

Since N# is a right Quillen functor and all objects in SpEKMM are fibrant, N# preserves homotopy
pullback squares and weak equivalences. It therefore suffices to prove (i),(ii),(iii) inside SpEKMM

using FNA(−,−) as the mapping spectra.
Condition (i) holds because 0 is the zero object of SpEKMM , so FNA(0, c) ≃ FNA(c, 0) ≃ 0 for all

c.
Condition (ii) holds because given a weak equivalence c

∼−→ c′ it induces a weak equivalences

FNA(c′, d) ∼−→ FNA(c, d) and FNA(d, c) ∼−→ FNA(d, c′),

because the spectra c, c′, and d are cofibrant and fibrant.
Consider the left-hand square in condition (iii). A pushout square in MA

0 is exactly a pushout
square in SpEKMM . Thus applying FNA(−, e) produces a pullback square

C(a, e)
OO

oooo C(b, e)
OO

C(c, e) oooo C(d, e)

where the cofibrations become fibrations. Since all objects are fibrant this is a homotopy pullback
square, as desired.

Now consider the right-hand square in condition (iii). The original square is a homotopy pushout
square, and since SpEKMM is stable it is also a homotopy pullback square. Thus applying FNA(e,−)
to this square produces another homotopy pullback square, as desired.

If desired, we can take the underlying category to be the category of cofibrant orthogonal A-module
spectra (respectively, those that are perfect), defining mapping objects by first applying N.

Note that we use EKMM spectra because all objects are fibrant, so the subcategory of cofibrant
spectra is both a Waldhausen category and has the correct mapping spectra (which preserve weak
equivalences in each variable). In orthogonal spectra, this is not true: we either take the cofibrant
spectra, which are a Waldhausen category but have the wrong mapping spectra, or we take the
cofibrant and fibrant spectra, which have the correct mapping spectra but are not a Waldhausen
category (not closed under pushouts along a cofibration).
Example 5.3. If C0 is a simplicially enriched Waldhausen category in the sense of [BM20] then
the spectral enrichment CΓ from [BM20, 2.2.1] is compatible with the Waldhausen structure in our
sense. The same is true for the non-connective enrichment CS from [BM20, 2.2.5] if C0 is enhanced
simplicially enriched.

Recall the spectral category Fun(I,C) of I-diagrams in C from §4. If C is a spectral Waldhausen
category, then we can give Fun(I,C0) the levelwise Waldhausen structure. In other words, given
functors ϕ, γ : I → C0, a natural transformation α : ϕ ⇒ γ is a cofibration (resp. weak equivalence)
if for every i ∈ ob I, the morphism α(i) : ϕ(i)→ γ(i) is a cofibration (resp. weak equivalence) in C0.
Proposition 5.4. The functor Fun(−,−) of Theorem 4.1 respects Waldhausen structures in the
second entry, defining a functor

Catop × SpWaldCat −→ SpWaldCat
(I, (C,C0)) 7−→ (Fun(I,C), Fun(I,C0)),

where Fun(I,C0) has the levelwise Waldhausen structure.

Proof. The axioms in Definition 5.1 are invariant under pointwise equivalence, so whenever necessary
we may fibrantly replace the mapping spectra of C without changing the fact that it is a spectral
Waldhausen category. Then we build the Moore end and verify the three axioms of a spectrally
enriched Waldhausen category.
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i. When ϕ = ∗ is the zero diagram, every term in the cosimplicial spectrum is a product of zero
spectra C(∗, γ(in)), so the totalization and therefore the Moore end is also isomorphic to zero.
The same argument works when γ = ∗.

ii. An equivalence of diagrams ϕ→ ϕ′ induces a product of equivalences

C(ϕ′(i0), γ(in)) −→ C(ϕ(i0), γ(in))

at each cosimplicial level, giving an equivalence on totalizations, and the same argument works
in the variable γ.

iii. Similarly, when we put a pushout square along a cofibration in one of the variables, the re-
sulting square of cosimplicial spectra is a homotopy pullback at each cosimplicial level, hence a
homotopy pullback on the totalizations.

The following consequence of the definition will be important later for defining the S•-construction:
Lemma 5.5. Let (C,C0) be a spectral Waldhausen category, and let C′

0 be a Waldhausen category with
the same objects, morphisms, and weak equivalences as C0, and whose cofibrations are a subcategory
of the cofibrations of C0. Then (C,C′

0) is also a spectral Waldhausen category.

5.2 The S•-construction

In this section we recall the S•-construction for Waldhausen categories and describe how to extend
it to spectral Waldhausen categories.
Definition 5.6. Let [k] denote the poset {0→ 1→ · · · → k}, considered as a category. Let (C,C0)
be a spectral Waldhausen category. Write wkC0 for the full subcategory of Fun([k],C0) spanned
by the functors that take each morphism in [k] to a weak equivalence in C0, and write wkC for
the full subcategory of the spectral category Fun([k],C) spanned by the objects of wkC0. Then
(wkC, wkC0) is a spectral Waldhausen category. By the functoriality of the Moore end in the I
coordinate (Theorem 4.1), as k varies this forms a simplicial object w• in SpWaldCat.
Lemma 5.7. The iterated degeneracy map w0C → wkC is a Dwyer–Kan equivalence of spectral
categories. In particular, the spectral categories wkC are all canonically Dwyer–Kan equivalent to C.

Proof. It follows from Theorem 4.1.ii that each degeneracy functor is a Dwyer–Kan embedding. Every
string of weak equivalences is equivalent to a string of identity maps, and by Definition 5.1.ii this
is also an isomorphism in the homotopy category coming from the spectral enrichment. Therefore
each degeneracy functor is also a Dwyer–Kan equivalence. The last statement of the lemma follows
because w0C is pointwise equivalent to C by Theorem 4.1.i.
Definition 5.8. We write (i ≤ j), (i = j), or (i ≥ j) for an object (i, j) of [k]× [k] according to which
of the given relations holds. If C0 is a Waldhausen category, let SkC0 denote the full subcategory of
Fun([k]× [k],C0) whose objects are the functors which

• take each object of the form (i ≥ j) to the zero object ∗ ∈ obC0,
• take each arrow (i ≤ j) −→ (i ≤ j + 1) to a cofibration, and
• take each square of the form

(i ≤ j)

��

// (i ≤ ℓ)

��

(i = i) // (j ≤ ℓ)

to a pushout square (along a cofibration).

By the first condition, the structure of an object of SkC0 is encoded by a functor on the category
of arrows Arr[k]. The other two conditions tell us that the functor gives a length k sequence of
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∗ // a(0 ≤ 1) //

��

a(0 ≤ 2) //

��

· · · // a(0 ≤ k − 1) //

��

a(0 ≤ k)

��

∗ // a(1 ≤ 2) //

��

· · · // a(1 ≤ k − 1) //

��

a(1 ≤ k)

��

∗ // · · · // a(2 ≤ k − 1) //

��

a(2 ≤ k)

��

...

��

...

��

∗ // a(k − 1 ≤ k)

��
∗

Fig. 5.9: A k-simplex in SkC0

cofibrations in C0, along with the grid formed by their quotients (see Figure 5.9), as in the usual
S•-construction [Wal85, §1.3].

If (C,C0) is a spectral Waldhausen category, let SkC denote the full subcategory of Fun([k]× [k],C)
spanned by the objects of SkC0. This is a spectral Waldhausen category, and by Lemma 5.5 continues
to be so when we restrict the class of cofibrations on the base category SkC0 to match the usual ones
(described by the hypotheses of Lemma 1.1.3 in [Wal85]). As k varies, the pairs (SkC, SkC0) define a
simplicial object S•C in SpWaldCat.
Remark 5.10. By Theorem 4.1.iii, there is an isomorphism of spectral categories

S1C ∼= Fun(∗,C).
More generally, we get the same spectral enrichment on SkC if we trim down the category [k] × [k]
by removing the objects 0 and k from the first and second copies of [k], respectively. However the
spectral enrichment using Arr[k] in place of [k] × [k] is not isomorphic, or even equivalent, to ours.
The extra zero objects provide the mapping spectra with important nullhomotopies.

Definition 5.11. The spectral category wk0S
(n)
k1,...,kn

C := wk0Sk1 · · ·SknC is defined by taking the full
subcategory of the spectral category

Fun([k0]× [k1]2 × · · · × [kn]2,C)
spanned by those functors

[k0]× [k1]2 × · · · × [kn]2 −→ C0

satisfying the condition determined by iterating the S•-construction.

As in Definition 5.8, we then restrict the cofibrations on the base category to match those that
occur in the iterated S•-construction; as before, by Lemma 5.5 the result is a well-defined spectral
Waldhausen category. By the functoriality of the Moore end in the I coordinate (Theorem 4.1), as the
indices ki vary the construction defines an (n+1)-fold multisimplicial object w•S

(n)
• C in SpWaldCat.

6 Symmetric spectra built from multisimplicial sequences

Recall that for an ordinary Waldhausen category C0, the algebraic K-theory K(C0) is the symmetric
spectrum that at level n is the geometric realization of the multisimplicial set

K(C0)n =
∣∣∣ob w•S(n)

• C0
∣∣∣. (6.1)
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The Σn-actions permute the S• terms and the spectrum structure maps come from the isomorphisms

wk0S
(n)
k1,...,kn

C0 ∼= wk0S
(n+1)
k1,...,kn,1C0.

In this section we formalize this method of creating a symmetric spectrum from a sequence of mul-
tisimplicial objects. As a result, we can apply the same process to THH(w•S

(n)
• C) for a spectral

Waldhausen category C. This is an essential maneuver in the construction of the Dennis trace in §7.
We also prove a properness theorem (Theorem 6.4), stating that the formation of symmetric

spectra as in (6.1) can be left-derived so that it is always homotopy invariant. In other words,
for such an object we can always make all of the multisimplicial objects proper, without losing the
structure that forms their realizations into a symmetric spectrum. This result makes our model of
the Dennis trace more robust, because it is insensitive to which point-set model of THH we use (see
Remark 7.15).

Let I be the category with one object n = {1, . . . , n} for every integer n ≥ 0, where 0 = ∅, and
morphisms the injective maps of finite sets m −→ n (which need not preserve order). For each n ≥ 0
let ∆op×n be the n-fold product of the usual simplicial indexing category; that is, the opposite of the
category of nonempty totally ordered finite sets

[k] = {0→ · · · → k}

for k ≥ 0 and order-preserving functions.
For each morphism f : m −→ n of I there is a functor f∗ : ∆×m −→∆×n taking

([k1], . . . , [km])

to the n-tuple whose value at f(i) is [ki] and whose value outside the image of f is [1]. In particular,
when m = n this gives an action of the symmetric group Σn on ∆op×n. This rule forms a strict
diagram of categories indexed by I. Therefore we may take its Grothendieck construction I

∫
∆op×−,

a category whose objects are tuples (m; k1, . . . , km) and whose morphisms consist of an injection
f : m −→ n in I and a morphism

(ϕi) : f∗([k1], . . . , [km])→ ([l1], . . . , [ln])

in ∆op×n.
Definition 6.2. Given a pointed category M, a Σ∆-diagram in M is a functor X(•;•,...,•) from the
Grothendieck construction I

∫
∆op×− to M satisfying:

• X(n;k1,...,kn) ∼= ∗ any time ki = 0 for at least one i, and

• the morphisms (m; k1, . . . , km) −→ (n; f∗(k1, . . . , km)) with every ϕi = id induce isomorphisms

X(m;k1,...,km) ∼= X(n;f∗(k1,...,km)).

Let M be a simplicially tensored pointed model category. Under these assumptions, we may
take the geometric realization of a simplicial object in M, symmetric spectrum objects in M are
well-defined, and multisimplicial objects in M have a Reedy model structure. The most important
example in §7 is when M is the category of simplicial objects in orthogonal spectra, the extra simplicial
direction accommodating the w•-construction.

We define a functor from Σ∆-diagrams X(•;•,...,•) to symmetric spectrum objects in M by taking
level n to be the geometric realization |X(n;•,...,•)|. To give the action of the indexing category ΣS for
symmetric spectra [MMSS01, 4.2], we observe that each injective map f : m −→ n produces a map

Σn−f(m)|X(m;•,...,•)| −→ |X(n;•,...,•)|

by identifying the left-hand side with the realization of the sub-object of the right-hand side in which
every index li with i ̸∈ f(m) is restricted to the values of 0 and 1, while the indices in f(m) take all
values. We simply call this operation | − |, since it amounts to taking realization and then making
some observations. The proof of the following is pure bookkeeping.
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Lemma 6.3. The above gives a well-defined functor | − | from Σ∆-diagrams in M to symmetric
spectrum objects in M.

Next we prove the properness theorem. We say that a morphism of Σ∆-diagrams is a level-wise
equivalence if it is a weak equivalence in M on each term X(n;k1,...,kn).
Theorem 6.4. The functor | − | is left-deformable, meaning that there is a class of Σ∆-diagrams on
which it preserves level-wise equivalences and that there is a cofibrant replacement functor with image
in this class.

Proof. The category of simplicial objects in M admits a Reedy model structure in which

i. an object X• is cofibrant when the latching maps

LnX :=
⋃

degeneracies
s : Xm→Xn

Xm −→ Xn

are all cofibrations,
ii. cofibrant replacement can be performed inductively over the simplicial levels, and

iii. geometric realization preserves weak equivalences between cofibrant objects.

The upshot of Item ii is that on the subcategory of simplicial objects where the first two latching
maps ∗ → X0 and L1X = X0 → X1 are already cofibrations, there is a cofibrant replacement functor
that does not modify the first two levels.

This generalizes to multisimplicial objects. There is a Reedy model structure on n-fold mul-
tisimplicial objects, obtained inductively as the Reedy model structure on simplicial (n − 1)-fold
multisimplicial objects, where the latching object at multilevel (k1, . . . , kn) is a colimit over the mul-
tilevels (l1, . . . , ln) with all li ≤ ki and some li ̸= ki. In particular, if the latching maps are already
cofibrations for all multilevels with at least one ki ≤ 1, then there is a cofibrant replacement that
does not change those multilevels, only those with all ki ≥ 2.

We extend this to a cofibrant replacement on Σn

∫
∆op×n-diagrams in M by carrying out the

factorization at one term (k1, . . . , kn) in each Σn-orbit of the objects of ∆op×n, and extending to the
remaining terms in the orbit by Σn-equivariance. To be precise, we pick a factorization

L(k1,...,kn)QX // // QX(k1,...,kn)
∼ // // X(k1,...,kn) ×M(k1,...,kn)X M(k1,...,kn)QX

∼ // // X(k1,...,kn)

in spaces that are equivariant with respect to the subgroup of Σn that fixes (k1, . . . , kn). Then for
(k′

1, . . . , k′
n) = σ(k1, . . . , kn) we define the cofibrant replacement to be QX(k1,...,kn) with structure

maps

L(k′
1,...,k′

n)QX
σ−1
// L(k1,...,kn)QX // QX(k1,...,kn) // X(k1,...,kn)

σ // X(k′
1,...,k′

n).

Note that the Σn-equivariance of the diagrams on the left and right make the composite into a
factorization of the given map L(k′

1,...,k′
n)QX → X(k′

1,...,k′
n). It is then straightforward to define the

action of the morphisms of Σn

∫
∆op×n on these replacements so that they form a cofibrant diagram

level-wise equivalent to X.
We extend this further to a cofibrant replacement on I≤n

∫
∆op×− by induction on n. At each

stage we extend the replacement from I≤(n−1)
∫

∆op×− to those objects of ∆op×n where at least one
index is ≤ 1, by declaring that each order-preserving map α : m→ n will go to an identity morphism
in the cofibrant replacement, and then carefully checking that there is a unique and well-defined way
to extend this definition to the remaining morphisms. We then extend to the rest of I≤n

∫
∆op×−

using the inductive cofibrant replacement from the previous paragraph. Using the structure of the
Grothendieck construction we check that everything is well-defined and commutes with the map back
to X. By construction, on each of the fiber categories ∆op×n the replacements are Reedy cofibrant,
so the realization will preserve equivalences. Finally, we check the construction is natural in maps
X → Y , so that the cofibrant replacement is a functor mapping naturally back to the identity functor.
This finishes the proof.
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7 The Dennis trace

We conclude by constructing the Dennis trace map K(End(C0))→ THH(C) for a spectrally enriched
Waldhausen category C. This is generalized to handle coefficients and lifted to TR in [CLM+], but
we give a short presentation here that highlights the role of the technical material developed in this
paper.
Definition 7.1. Given a Waldhausen category C0, let End(C0) be the Waldhausen category of func-
tors Fun(N,C0), where N is considered as a category with one object and morphism set N. More
concretely, the objects of End(C0) are endomorphisms f : a −→ a in C0, and the morphisms are
commuting squares of the form

a
f
//

i
��

a
i
��

b g
// b.

We define such a morphism to be a cofibration or weak equivalence if i is a cofibration or weak
equivalence, respectively. We also define exact functors

C0 End(C0)
ι0

ι1

where End(C0) −→ C0 forgets the endomorphism f . The inclusions ι0, ι1 : C0 −→ End(C0) equip each
object a with either the zero endomorphism or the identity endomorphism.
Example 7.2. If A is a ring spectrum and C = PA is the spectral Waldhausen category of perfect
A-modules from Example 5.2, then K(C0) is the usual definition of algebraic K-theory K(A), and
the K-theory of End(C0) is the K-theory of endomorphisms K(End(A)).

Let C be a spectral Waldhausen category. The key observation underlying the construction of the
Dennis trace is that the inclusion of the 0-simplices in the cyclic bar construction (see Definition 3.6)
defines a canonical map ∨

c0∈obC0

C(c0, c0)→ THH(C). (7.3)

Each object f : c0 → c0 of End(C0) defines a map of spectra S −→ C(c0, c0), and so composing with
(7.3) gives a map

Σ∞ob End(C0) =
∨

f : c0→c0,
c0 ̸=∗

S −→
∨

c0∈obC0

C(c0, c0) −→ THH(C) (7.4)

where f runs over the objects of End(C0). Applying (7.4) to the spectral Waldhausen category
wk0S

(n)
k1,...,kn

C for each value of n and k0, . . . , kn defines a map of orthogonal spectra

Σ∞ob End(wk0S
(n)
k1,...,kn

C0) −→ THH(wk0S
(n)
k1,...,kn

C). (7.5)

The target of the map in (7.5) is known to split into a wedge of copies of THH(C), by the additivity
theorem for THH [DM96, DGM13, BM12, BM20]. A streamlined proof of additivity using shadows
in bicategories can be found in [CLM+, Theorem 5.9]. The idea underlying the proof amounts to a
categorification of the fact that the trace of a diagonal block sum of matrices is the sum of the traces.
Theorem 7.6 (The additivity theorem for THH). Given a spectral Waldhausen category C, there is
an equivalence of spectra ∨

1≤ij≤kj

1≤j≤n

THH(C) ∼−→ THH(wk0S
(n)
k1,...,kn

C)
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∗ // ∗ //

��

∗ //

��

c //

��

c

��
∗ // ∗ //

��

c //

��

c

��
∗ // c //

��

c

��
∗ // ∗

��
∗

Fig. 7.7: An example of ιij with ij = 3 and kj = 4

induced by the inclusions of spectral Waldhausen categories

ιij : C −→ wk0S
(n)
k1,...,kn

C

that are constant in the wk0 direction, embed a copy of C in the top entry of the ij-th column of
the j-th S•-construction, with the remaining entries determined (as in Figure 7.7), and are constant
along the remaining S• directions.

Appending the splitting from Theorem 7.6 to the map (7.5) gives a zig-zag of orthogonal spectra

Σ∞ob End(wk0S
(n)
k1,...,kn

C0) −→ THH(wk0S
(n)
k1,...,kn

C) ≃←−
∨

1≤ij≤kj

1≤j≤n

THH(C). (7.8)

The number of summands on the right is the same as the number of nonzero points in the set
S1

k1
∧ · · · ∧ S1

kn
, where S1

• is the simplicial circle ∆[1]/∂∆[1]. Therefore these wedge sums form an
(n + 1)-fold multisimplicial spectrum (S1

•)∧n ∧ THH(C) that is constant in the k0 direction.
The following lemma follows directly from the definitions and Theorem 7.6:

Lemma 7.9. The maps in the zig-zag (7.8) of multisimplicial orthogonal spectra commute with the
Σn-actions and the identifications that remove a simplicial direction when its index is equal to 1. In
other words the given maps form a zig-zag of Σ∆-diagrams of simplicial orthogonal spectra.

Another way of saying this is that (S1
•)∧n ∧ THH(C) is the free Σ∆-diagram on the spectrum

THH(C) at level (0; ), and the map inducing the splitting in the additivity theorem agrees with the
map that arises from the free-forgetful adjunction.

The geometric realization of each of these objects is a symmetric spectrum object in orthogonal
spectra. We call such an object a bispectrum. Bispectra are equivalent to orthogonal spectra, along
a prolongation functor that turns every bispectrum into an orthogonal spectrum; see Appendix A for
details.

At level n in the symmetric spectrum direction, the resulting zig-zag of orthogonal spectra is

|Σ∞ob End(w•S(n)
• C0)| −→ |THH(w•S(n)

• C)| ≃←− Σn THH(C). (7.10)

There is a canonical identification of sets

ob End(w•S(n)
• C0) = ob w•S(n)

• End(C0)

which identifies the bispectrum on the left of (7.10) with the orthogonal suspension spectrum of the
symmetric spectrum K(End(C0)). On the other hand, the spectrum on the right of (7.10) is the
symmetric suspension spectrum of the orthogonal spectrum THH(C).
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Applying the (left-derived) prolongation functor from Proposition A.7 to these bispectra, we get
a zig-zag of orthogonal spectra

PK(End(C0)) −→ P|THH(w•S∗
•C)| ≃←− THH(C). (7.11)

Here P is the prolongation operation from symmetric spectra to orthogonal spectra.
Definition 7.12. The Dennis trace map associated to a spectral Waldhausen category C is ob-
tained by choosing an inverse to the wrong-way map in (7.11), defining a map

trc : PK(End(C0)) −→ THH(C) (7.13)

in the homotopy category of orthogonal spectra, or, equivalently, in the homotopy category of sym-
metric spectra

trc : K(End(C0)) −→ UTHH(C) (7.14)
to the underlying symmetric spectrum of THH.
Remark 7.15. In order to justify that the backwards map of the zig-zag is an equivalence after
realization in (7.10), we need to know that all three multisimplicial orthogonal spectra in the zig-zag
are Reedy cofibrant, as discussed in Section 6. For the two outside terms this is follows from the
definition. For the middle term it may not be true; however by Theorem 6.4 we can always fatten
the zig-zag to an equivalent one for which this holds. As a result of the properness theorem, the
construction of the Dennis trace is insensitive to the choice of model for THH.
Example 7.16. Taking C = PA for a ring spectrum A, we get maps

K(A) K̃ End(A) THH(A)
∼
��

K( PA ) ι1 // K̃ End( PA ) trc // THH( PA )

whose composite agrees with the Dennis trace map K(A) → THH(A) studied previously [DM96,
DGM13, Mad94]. The right vertical equivalence is an instance of the Morita invariance of THH, as
in Theorem 3.13.

A Model categories of bispectra

As we saw in §7, two spectral directions arise naturally in the construction of the Dennis trace map
for a spectral Waldhausen category C: the orthogonal spectrum structure of THH(C) coming from
the enrichment of C and the symmetric spectrum structure coming from the iterated S•-construction.
The Dennis trace is therefore naturally a map of bispectra.

This appendix collects several key results about bispectra and diagram spectra that are used in
§7 and [CLM+], most importantly Proposition A.7, which details the equivalences between bispectra
and orthogonal spectra. We give these results for G-equivariant bispectra that are naive in one
direction and genuine in the other, since this structure is needed in the companion paper [CLM+].
Other sources that discuss bispectra include [MMSS01, Hov01, DMP+19]. A reader who has spent
time with [MMSS01, MM02] will probably find this section familiar.

We begin by recalling the indexing categories for diagram spectra from [MMSS01, MM02]. Let
ΣS be the topological category with objects the natural numbers, regarded as the finite sets n =
{1, . . . , n}, and morphism spaces

ΣS(m, n) =
∨

i : m↪→n

Sn−i(m).

Topological diagrams on ΣS encode the same data as symmetric spectra.
Let J be the topological category with objects the natural numbers, regarded as the Euclidean

spaces Rn, and morphism spaces

J (Rm,Rn) = O(Rm,Rn)+ ∧O(n−m) Sn−m.
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Here O(Rm,Rn) is the space of linear isometric embeddings Rm → Rn, and the above space is the
Thom space of the bundle that assigns an embedding to its orthogonal complement. Topological
diagrams on J encode the same data as orthogonal spectra.

Fix a finite group G, and let JG be the category enriched in G-spaces whose objects are finite-
dimensional G-representations V in some fixed universe U, morphisms as above for J with G acting
by conjugating the map V → W and acting on the vector in the complement. G-enriched diagrams
on JG encode the same data as orthogonal G-spectra.

Continuing to fix a finite group G, let ΣS ∧JG be the smash product category, whose objects are
pairs (n, V ) and whose morphism spaces are the smash product ∨

i : m↪→n

Sn−i(m)

 ∧ (
O(V, W )+ ∧O(W −V ) SW −V

)
.

Topological diagrams on this category are called (symmetric-orthogonal) equivariant bispectra.
They are symmetric spectrum objects in orthogonal G-spectra. Let GBi be the category of such
bispectra. When G is the trivial group, we simply call these objects bispectra.

It is a standard fact that orthogonal G-spectra are nothing more than G-objects in the category
of orthogonal spectra. The following is the analog for bispectra.
Lemma A.1. G-enriched diagrams on ΣS ∧JG are equivalent to G-objects in diagrams on ΣS ∧J .
More informally, an equivariant bispectrum is the same thing as a bispectrum with a G-action.

Proof. Identical to the argument from [MM02, V.1.5]. The forgetful functor that restricts from JG to
the subcategory J induces an equivalence on categories of G-enriched diagrams, essentially because
when we forget the G-actions J −→JG is an equivalence of topological categories.

For every G-space A, integer n ≥ 0 and finite-dimensional G-representation V ⊂ U, we define the
free bispectrum F(n,V )A as the free diagram

ΣS(n,−) ∧JG(V,−) ∧ A.

A map of equivariant bispectra X −→ Y is a level-wise equivalence or level-wise fibration if
the map X(n, V )H −→ Y (n, V )H is an equivalence, respectively a Serre fibration, for all n and V ,
and H ≤ G.
Proposition A.2. There is a cofibrantly generated level model structure on GBi using the level-wise
equivalences, the level-wise fibrations, and generating cofibrations and acyclic cofibrations

I =
{

F(n,V )
[
G/H × Sk−1 → G/H ×Dk

]
+

∣∣∣∣∣n, k ≥ 0, V ∈ U, H ≤ G

}

J =
{

F(n,V )
[
G/H ×Dk → G/H ×Dk × I

]
+

∣∣∣∣∣n, k ≥ 0, V ∈ U, H ≤ G

}
.

We call the cofibrations in this model structure free cofibrations.

Proof. Following [Hov99], an I-cell complex is a map built as a sequential colimit of pushouts of
coproducts of maps in I. An I-injective map is a map with the right lifting property with respect
to I, and an I-cofibration is a map with the left lifting property with respect to I-injective maps.
The result is a consequence of the following list of sufficient conditions:

i. The weak equivalences are closed under 2-out-of-3 and retracts.
ii. A map from a domain in I into an I-cell complex factors through some finite stage, and the

same condition for J .
iii. A J-cell complex is both a level-wise equivalence and an I-cofibration.
iv. A map is I-injective if and only if it is both a level-wise equivalence and J-injective.



A Model categories of bispectra 53

A π∗-isomorphism of equivariant bispectra is a map X −→ Y inducing isomorphisms on the
equivariant stable homotopy groups

πH
k (X) = colim

(n,V )
π0([Ωn+k+V X(n, V )]H)

for all k ∈ Z and H ≤ G. The colimit is taken along the filtered system with one morphism
(m, V ) −→ (n, W ) when m ≤ n and V ⊆ W ⊂ U, and no morphisms otherwise. The maps all arise
from the action of the category ΣS ∧JG, but restricted to the standard inclusions m ↪→ n hitting
only the first m elements, and the inclusions V ⊆ W as subspaces of U. When k < 0 we further
restrict to n ≥ |k| and interpret Ωn+k+V as Ωn+kΩV , or restrict to V containing a standard copy of
R|k| and interpret Ωn+k+V as ΩnΩV −R|k| . These two interpretations give naturally isomorphic groups.

An equivariant bispectrum X is an Ω-spectrum if the canonical maps

X(n, V ) −→ Ωm+W X(m + n, V + W )

are all equivariant weak equivalences. A stable equivalence of equivariant bispectra is a map
X → Y inducing an isomorphism [Y, Z]→ [X, Z] for all Ω-spectra Z, where [−,−] denotes maps in
the level homotopy category.

We construct a model structure with the stable equivalences just as in [MM02]. To streamline the
exposition we present the minimal list of preliminary results needed to get the model structure, in
an order that matches both the way they are proven and the way they are used in the proof of the
model structure. Throughout, we define homotopy cofibers Cf = (I ∧ X) ∪X Y , homotopy fibers
Ff = X×Y F (I, Y ), smash products A∧− and homs F (A,−) for G-spaces A, by applying the usual
constructions at each bispectrum level.
Proposition A.3.

i. A coproduct of stable equivalences is a stable equivalence.
ii. A pushout of a stable equivalence is a stable equivalence, provided one of the two legs is a free

cofibration.
iii. A countable composition of maps that are stable equivalences and free cofibrations is again a

stable equivalence.
iv. If f is a stable equivalence then Cf is stably equivalent to zero.
v. There are natural isomorphisms πH

k+1(ΣX) ∼= πH
k (X) ∼= πH

k−1(ΩX). Composing these together,
the unit X → ΩΣX and counit ΣΩX → X are both π∗-isomorphisms.

vi. There is a functorial way to assign to each map of bispectra f : X −→ Y two long exact sequences

. . . // πH
k (Ff) // πH

k (X) // πH
k (Y ) // πH

k−1(Ff) // . . .

. . . // πH
k+1(Cf) // πH

k (X) // πH
k (Y ) // πH

k (Cf) // . . .

vii. There is a natural π∗-isomorphism Ff
∼−→ ΩCf .

viii. Every level-wise equivalence or π∗-isomorphism is a stable equivalence.
ix. For Ω-spectra, every stable equivalence is a level-wise equivalence.

Proof. Items i through iii follow because [−, Z] turns coproducts to products, pushouts to pullbacks,
and sequential colimits to lim1 exact sequences. The given assumptions ensure that if we start with
cofibrant spectra then the input to [−, Z] will also always be cofibrant. Items iv and ix also follow
formally from the definition of stable equivalence. Items v through vii are proven just as they are
classically. For Item viii, as in [MMSS01, 8.8] it suffices to form a right deformation X

q−→ QX such
that q is a level-wise equivalence when X is an Ω-spectrum, and Q sends π∗-isomorphisms to level-wise
equivalences. We construct Q here by doing the construction from [MMSS01, 8.8] in the symmetric
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spectrum direction and observing that it is continuously natural, therefore gives a bispectrum, and
then repeating the same construction in the orthogonal spectrum direction, in both steps identifying
the level homotopy groups of the result with the colimit of the homotopy groups of the original in
one direction or the other, to confirm that it sends π∗-isomorphisms to level-wise equivalences. It
also preserves Ω-spectra because Ω commutes with mapping telescopes up to equivalence.

For arbitrary pairs (i, V ) and (j, W ), let k(i,V ),(j,W ) refer to the map of bispectra that is the
inclusion of the front end of the mapping cylinder for the canonical map

λ(i,V ),(j,W ) : F(i+j,V +W )S
j+W −→ F(i,V )S

0.

Lemma A.4. λ(i,V ),(j,W ) is a stable equivalence, as is A ∧ λ(i,V ),(j,W ) for any based G-CW complex
A.

Proof. Taking maps into Z gives F (A, Z)(i,V ) −→ Ωj+W F (A, Z)(i+j,V +W ), which is a stable equiva-
lence for any Ω-spectrum Z.
Proposition A.5. There is a cofibrantly generated stable model structure on GBi with the stable
equivalences, and generating cofibrations and acyclic cofibrations

I =
{

F(n,V )
[
G/H × Sk−1 → G/H ×Dk

]
+

∣∣∣∣∣n, k ≥ 0, V ∈ U, H ≤ G

}

J =
{

F(n,V )
[
G/H ×Dk → G/H ×Dk × I

]
+

∣∣∣∣∣n, k ≥ 0, V ∈ U, H ≤ G

}

∪
{

k(i,V ),(j,W ) □
[
G/H × Sk−1 → G/H ×Dk

]
+

∣∣∣∣∣i, j, k ≥ 0, V, W ∈ U, H ≤ G

}
.

A map X −→ Y is a fibration in this model structure if and only if it is a level-wise fibration and
each square of the following form is a homotopy pullback

XH
(m,V )

��

// (Ωn+W X(m+n,V +W ))H

��

Y H
(m,V )

// (Ωn+W Y(m+n,V +W ))H .

(A.6)

Here □ refers to the pushout-product, constructed from the operation that smashes a bispectrum
with a space to produce another bispectrum.

Proof. As in the proof of Proposition A.2 it suffices to check the following four points.

i. The weak equivalences are closed under 2-out-of-3 and retracts, because they are defined from
a notion of homotopy group.

ii. A map from a domain in I into an I-cell complex factors through some finite stage, and similarly
for J . This follows since the domains are finite unions of free spectra on compact spaces.

iii. A J-cell complex is both a weak equivalence and an I-cofibration. For the I-cofibration part
we use standard properties of pushout-products to show the new maps in J are also I-cell
complexes. Using the facts about coproducts, pushouts, and compositions of stable equivalences
from Proposition A.3, the other part boils down to the fact that the smash product of k(i,V ),(j,W )
and a finite G-CW complex such as (G/H×Sk−1)+ is a stable equivalence, which is Lemma A.4.

iv. A map is I-injective if and only if it is both a stable equivalence and J-injective. We already know
that I-injective is equivalent to being a levelwise acyclic Serre fibration. J-injective rearranges
to every level being a Serre fibration, and in addition the pullback-hom from k(m,V ),(n,W ) is a
weak equivalence of based spaces. This latter map is then equivalent to

X(m, V ) −→ Ωn+W X(m + n, V + W )×Ωn+W Y (m+n,V +W ) Y (m, V ).
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So it is an equivalence precisely when the square (A.6) is a homotopy pullback, assuming at all
times that X −→ Y is a level-wise fibration, see also [MM02, 4.8].
So if f : X −→ Y is I-injective, then it is a level-wise equivalence, implying both that it is a
stable equivalence and that (A.6) is a homotopy pullback. Since it is also a level-wise fibration,
this implies it is J-injective. Going the other way, if f is J-injective and a stable equivalence,
then the squares (A.6) are homotopy pullbacks, so the homotopy fiber Ff is an Ω-spectrum.
Since f is a stable equivalence, combining several of the points from Proposition A.3, we conclude
that Ff is level equivalent to zero, hence f is a level-wise equivalence. We also know it is a
level-wise fibration, and these together imply f is I-injective.

Next we relate equivariant bispectra back to simpler kinds of spectra. Recall that a naive sym-
metric G-spectrum is a symmetric spectrum with G-action, where an equivalence of such is a map
X → Y for which the induced map of fixed point spectra XH → Y H is an equivalence for every
H ≤ G. These have a model structure cofibrantly generated by the maps

I =
{

Fn

[
G/H × Sk−1 → G/H ×Dk

]
+

∣∣∣∣∣n, k ≥ 0, H ≤ G

}

J =
{

Fn

[
G/H ×Dk → G/H ×Dk × I

]
+

∣∣∣∣∣n, k ≥ 0, H ≤ G

}

∪
{

ki,j □
[
G/H × Sk−1 → G/H ×Dk

]
+

∣∣∣∣∣i, j, k ≥ 0, H ≤ G

}
.

By contrast, a genuine orthogonal G-spectrum is an orthogonal G-spectrum in the model struc-
ture from [MM02], where a map is an equivalence if it induces isomorphisms on the homotopy groups

πH
k (X) =


colim
V ⊂U

πk

([
ΩV X(V )

]H
)

if k ≥ 0

colim
V ⊂U, R|k|⊂V

π0

([
ΩV −R|k|

X(V )
]H

)
if k < 0.

Now consider the following three adjunctions.

i. For each naive symmetric spectrum X we create an equivariant bispectrum Σ∞X by defining

(Σ∞X)n,V = ΣV Xn.

The right adjoint of the functor Σ∞ restricts a bispectrum to the levels (n, 0) for all n to produce
a symmetric spectrum.

ii. From each genuine orthogonal G-spectrum X, we create an equivariant bispectrum Σ∞X by
the rule

(Σ∞X)n,V = ΣnXV .

The right adjoint of the functor Σ∞ restricts a bispectrum to the levels (0, V ) to produce an
orthogonal spectrum.

iii. Choose an isomorphism R∞⊕U ∼= U, and define a functor ΣS ∧JG −→JG that sends (n, V )
to the image of Rn ⊕ V under this isomorphism. The restriction and left Kan extension along
this functor give an adjunction between equivariant bispectra and orthogonal G-spectra. We
call the left adjoint prolongation P(−) and the right adjoint the shift bispectrum sh(−),
following [DMP+19]. Concretely, PX is the coequalizer∨

(m,V ),(n,W )

JG(Rn ⊕ W, −) ∧ ΣS(m, n) ∧ JG(V, W ) ∧ X(m,V ) ⇒
∨

(m,V )

JG(Rm ⊕ V, −) ∧ X(m,V ) → PX

and sh(Y )(n,V ) = YRn⊕V . Up to isomorphism, these functors do not depend on the original
choice of isomorphism R∞ ⊕ U ∼= U.

Proposition A.7. The above three adjunctions are Quillen adjunctions, and the last two are Quillen
equivalences.
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Proof. In each of the three cases, the left adjoint preserves free spectra, from which it follows that it
preserves the generating cofibrations and acyclic cofibrations. To verify that the last two are Quillen
equivalences, we observe that they compose to give the identity functor on orthogonal G-spectra, so
it suffices to show that the first one (Σ∞) gives an equivalence of homotopy categories. It has P as
its left inverse, so it is faithful. To show it is full and essentially surjective, it suffices to construct a
right inverse. To do this we take an Ω-bispectrum X and check that the natural map

Σ∞resX → X (A.8)
from the suspension spectrum of its restriction is a π∗-isomorphism. To prove this it suffices to show
that the map of colimit systems defining πH

k is bijective on the colimits when restricted to any one
symmetric spectrum level n, where it arises from a map of orthogonal spectra of the form

ΣnX(0,−) −→ X(n,−).
Since X is an Ω-spectrum, we can identify this with the counit map

ΣnΩnX(n,−) −→ X(n,−)
which is always a π∗-isomorphism of orthogonal spectra as in Proposition A.3(v).

Let H ≤ G be any subgroup. For simplicity we assume that G is abelian so that its Weyl group
is just G/H. Let J H

G denote the category obtained from JG by taking H-fixed points of all the
mapping spaces. Let

L : J H
G −→JG/H

be the map of topological categories taking V to V H , acting on morphisms by

i : V −→ W, w ∈ (W − i(V ))H ⇝ iH : V H −→ W H , w ∈ W H − i(V H).

For each G-equivariant bispectrum X the spaces X(n, V )H form a diagram on J H
G , that we call

FixHX.
Definition A.9. The geometric fixed point bispectrum ΦHX is the left Kan extension of FixHX
along the functor

ΣS ∧J H
G

id∧L // ΣS ∧JG/H .

Equivalently, it is the functor ΦH on orthogonal spectra, applied to the orthogonal spectrum Xn at
every symmetric spectrum level n ≥ 0, which then assemble together into a bispectrum.

The following has the same proof as in [MM02].
Lemma A.10. The functor ΦH(−) is not a left adjoint, but preserves coproducts, sends pushouts
along levelwise closed inclusions to pushouts, and sends sequential colimits along levelwise closed
inclusions to colimits. Furthermore there are natural isomorphisms of G/H-spectra

ΦHF(n,V )A ∼= F(n,V H)A
H .

Corollary A.11. ΦH preserves cofibrations and acyclic cofibrations.

Therefore ΦH preserves weak equivalences between cofibrant objects, so it has a well-defined left-
derived functor by applying it to cofibrant inputs.
Proposition A.12. For naive symmetric G-spectra X there is a natural isomorphism of G/H-
bispectra

ΦHΣ∞X ∼= Σ∞XH .

For orthogonal G-spectra X there is a natural isomorphism of G/H-bispectra

ΦHΣ∞X ∼= Σ∞ΦHX.

For equivariant bispectra X there is a natural map of orthogonal G/H-spectra

PΦHX −→ ΦHPX

that is an isomorphism when X is cofibrant.
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Proof. The first point follows just as in the isomorphism from Lemma A.10, and the second point fol-
lows easily since geometric fixed points are being applied at each orthogonal spectrum level separately.
For the last point we observe there is a canonical map of J H

G -diagrams

PHFixHX −→ FixHPX

that is an isomorphism when X is cofibrant, the first term PH denoting left Kan extension along the
H-fixed points of the direct sum map ΣS ∧J H

G −→J H
G . Then we apply left Kan extension along L

to both sides, and commute the left Kan extensions on the left-hand side to get the desired natural
map.

The argument from [Mal17, §3] also establishes the following rigidity lemma. Together with
rigidity for orthogonal spectra, this proves that the above isomorphisms are unique and therefore we
encounter no coherence issues when commuting them past each other.
Lemma A.13. Any functor from cofibrant G-bispectra to orthogonal spectra that is isomorphic to
ΦGPX is uniquely isomorphic to ΦGPX. The same applies to ΦGX as a functor from cofibrant
G-bispectra to bispectra.
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