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Continuous images ot a topological space oL

GERALD BEER

Abstract

It is not customary in general topology textbooks to characterize the continuous images of a given topological space up to
homeomorphism. In this note, we discuss a novel characterization of such spaces and possible ways to integrate our result
into the curriculum.
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1 Introduction

One of the most important results that the student sees in an introduction to group theory charac-
terizes the homomorphic images of a given group. It has two parts. First, If (G, +) is a group and N
is a normal subgroup, then G/N, the set of cosets of N, can be made into a group called a quotient
group because (g1 +N) @ (g2 + N) := (g1 +¢g2) + N is well-defined. Further, g — g+ N is a surjective
homomorphism from G to G/N. Conversely, if the group (H,+) is the image of (G,+) under a
homomorphism f, then the kernel of f which we denote by ker(f) is a normal subgroup of G and
G /ker(f) is isomorphic to H. In short, the homomorphic images of (G, +) are (up to isomorphism)
quotient groups of (G, +) [3, pp. 56-60].

One would think that an analogous result would be a feature of general topology, where homo-
morphic images of a group (G, +) are replaced by continuous images of a topological space (X, 7).
and where the image space is asserted to be homeomorphic to some quotient of the domain. There
is nothing explicit in this direction in any standard text. The purpose of this note is to supply this
missing piece to the curriculum, describing two different ways to obtain it. We apply it to quickly ob-
tain this known characterization of the continuous images of (X, 7): they are the bijective continuous
images of quotients of the domain space.

2 Preliminaries
Let X be a nonempty set and let (Y, o) be a topological space and suppose f: X — Y. Then

T}l’};ak ={f'(V):Vea}

is the weakest topology on X making f continuous. We call this the weak topology on X determined
by f and o. On the other hand, if (X, 7) is a topological space and Y is a nonempty set, then the
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family {V C Y : f~1(V) € 7}, which we denote by U;Z(mg is the strongest topology on Y making f
continuous. We of course call this the strong topology on Y determined by f and 7.

Lemma 2.1. Let (Y,0) be a topological space and let X be a nonempty set. Suppose f: X — Y is
weak weak

onto and X is equipped with 777 . Then o is the strong topology on Y determined by f and 7f;
on X.

Proof. Let E belong to the strong topology. This means f~!(E) belongs to T}‘jgak, that is, f~1(F) =
f~YV) for some V € o. But then by surjectivity,

E=f(f{(E)=f(f(V)=Veo

weak

This shows that the strong topology on Y determined by f and 75"" is a subfamily of o. The reverse
inclusion is obvious. [

Corollary 2.2. Let X be a nonempty set and let (Y,0) be a topological space. Suppose f: X —Y
is surjective. Then (Y, o) satisfies the Ty-separation property if and only if for eachy € Y, f~*({y})
is weakly closed, that is, X\ f~1({y}) belongs to T}‘jgak,

Proof. By Lemma 2.1, a subset of Y is o-closed if and only if its preimage under f is weakly closed. []

Suppose {A; : i € I} is a partition of a nonempty set X by nonempty subsets. We define the
natural map q : X — {A; : i € I} by letting ¢(z) be the unique block of the partition containing x.
Suppose now that 7 is a topology on X. We equip {A4; : i € I} with a topology 1, where {A; : i € I}
for Iy C I is placed in j, provided U;cz, A; belongs to 7. The topological space ({A4; : i € I}, )
is called a quotient space [1, 2, 5, 6] or a decomposition space [4, 5, 6, 7] of (X, 7). Not only is ¢
continuous, but . is also the strong topology on {A; : i € I} determined by ¢ and 7, because for
Iy C 1, {A;:i€ Iy} € prif and only if ¢ 1 ({A; i € Iy}) = Useq, Ai € 7 [6, p. 59).

The central result about decomposition spaces is now described in the most qualitative way pos-
sible (see, e.g., [7, p. 61]), as this best serves our purposes.

Theorem 2.3. Let (X, 1) and (Y, 0) be topological spaces. Then there exists a surjection f: X —Y
such that o = a;f:mg if and only if (Y, o) is homeomorphic to a decomposition space of (X, ).

Functions f as described in Theorem 2.3 are called either quotient maps [2, 7] or identifications
[1, 4]. For the proof of necessity, the particular partition of X that is used is {f~'(y) : y € Y'}.

3 The main result

Initially, we give a self-contained, naive proof of our main result without any reference to strong
topologies/quotient maps/identifications. We do so to allow the instructor to present the result rather
early in the course, without having to discuss some version of Theorem 2.3 at all. In the interest of
time, the instructor might not be willing cover Theorem 2.3, given the choices he/she/they have with
respect to topics that might be included at the end of the course, e.g., nets, uniformities or complete
metrizability.

This will be followed by an economical proof based on Theorem 2.3 for the benefit of those
instructors willing to include better coverage of decomposition spaces in their course.

Theorem 3.1. Let (X, 7) and (Y,0) be topological spaces. Then (Y,0) is the continuous image of
(X, 7) if and only if (Y, o) is homeomorphic to some decomposition space of (X, T*) where T* is some
topology on X coarser than .
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Proof. First, suppose ({A; : i € I}, ur+) is a decomposition space of (X, 7*) where 7* C 7. We claim
that the natural map ¢q : (X,7) — ({4; : i € I}, pr+) is continuous. If {A; : i € Iy} € p~ where
Iy C I, then by definition of the decomposition space topology,

¢ {A i e ))) = U A, et Cr,

i€lp

and so ¢ is continuous on (X, 7). As a result, if h: ({4; 17 € I}, ur-) — (Y, 0) is a homeomorphism,
then (Y, o) is the continuous image of (X, 7) under h o gq.

Conversely, suppose (Y, o) is the continuous image of (X, 7). By surjectivity, {f~*({y}) : y € Y} is
a partition of X by nonempty subsets. Equip X with 7* := T}lﬁak C 7 and consider the decomposition
space topology it determines on {f~*({y}) : y € Y}, which we denote simply by u to cut down on
symbol shock. We intend to show ({f~*({y}) : y € Y}, u) is homeomorphic to (Y, o).

We work with the bijection h : {f7'({y}) : y € Y} = Y that assigns y to f~}({y}). To show h

maps open sets to open sets, let {f~1({y}) : y € E} belong to u where E C Y. By the definition of
M,

= U 'y} e e,

yelE

By the definition of 7<%, we conclude that for some V' € o, we have f~'(E) = f~!(V) and since f
is onto we get £/ = V. Finally,

M{f7 'y} :ye BY) ={y:yc E} =V,

and thus h maps {f~*({y}) : y € E} to a member of o.

To show h is continuous, let V' € ¢ be arbitrary. We compute

W) ={rw):yeV={/"{y}):yeV}en

because U,y Yy =Ff1v)e r}fgak. O

Images of continuous maps can be unexpected, e.g., consider the space filling curves f : [0,1] —
[0,1] x [0,1]. We say this simply to remark that the square is a decomposition space for some weird
topology on the interval, coarser than the usual metric topology on [0, 1], which is for us remarkable.

As announced at the beginning of this section, we indicate a second approach to the proof of
necessity in our main result that the instructor willing to cover some version of Theorem 2.3 probably
would prefer. Let f : (X,7) — (Y,0) be a continuous surjection. By Lemma 2.1, o is the strong

topology on Y determmed by f and T“’mk Apply Theorem 2.3 where 7 is replaced by T“’eak noting
that by continuity of f, wf;“k Cr.

Let f: (X,7) — (Y,0) be continuous and onto. Theorem 2.3 says that we can take 7* to be 7 in
the statement of Theorem 3.1 if and only if ¢ is the strong topology on Y determined by f and 7.
In particular, this is so if f is either open or closed in addition to being continuous [7, Theorem 9.2].
We find it useful to appreciate in concrete terms how proper subtopologies of 7 can also do the job
even when 7 does.

Lemma 3.2. Let (X, 1) be a disconnected topological space where T has at least 5 members. Suppose
{A1, Ao} is a nontrivial separation of the space by members of 7. Let 7% := {), Ay, Ao, X}. Then
({A1, Ao}, ) = ({ A1, Ao}, pire) while T is properly coarser that 7.
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Proof. Both pr and p,- are the discrete topology on the blocks of the partition. The topology 7* is
properly coarser than 7 because 7* contains less than 5 members. O

Ezample 3.3. Consider X := (—o0,0) U (0, 00) equipped with the relative topology 7 that X inherits
from the real line. Let Y := {0, 1} equipped with the discrete topology o. Let f : X — Y be the char-
acteristic function of (0, 00). Obviously, f is open and continuous, and so (Y, o) is homeomorphic to a
quotient space of (X, 7). At the same time, by our main result, (Y, o) is homeomorphic to a quotient
space of X equipped with the weak topology determined by f and o, i.e, by {0, (—o0,0), (0,00), X }.

4 A second characterization of continuous images

There is a different well-known way to describe the continuous images of a topological space (X, T)
that is more in concert with Theorem 2.3: they are the continuous bijective images of some decom-
position space of (X, 7) (see [2, p. 124] and [7, Problem 9F]). We end our note by deriving this
alternative characterization from our main result.

Since each decomposition space of (X, 7) is the continuous image of the base space, each bijective
continuous image of the decomposition space will in turn be a continuous image of (X, 7). Conversely,
if (Y, o) is the continuous image of (X, 7), then by Theorem 3.1, (Y, ¢) is the continuous bijective image
of ({f~Xy) :y € Y}, u) where u is coarser than ju,. Using the identity map, ({f1(y) : y € Y}, u)
is the continuous bijective image of ({f~!(y) : y € Y}, iy ), and taking a composition, it follows that
(Y, o) is the continuous bijective image of ({f~1(y):y € Y}, ur).

We prefer our first characterization to the second, and not only because continuous images are
described homeomorphically by it. In Theorem 3.1, our condition for surjective continuity for some
function from X to Y just seems so much stronger and more descriptive. In either case, proof of
sufficiency is immediate.
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