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Growth of analytic solutions of linear
differential equations with analytic
coefficients near a finite singular point
Karima Hamani and Meryem Chetti

Abstract

In this paper, we investigate the growth of analytic solutions of the linear differential equation

f (k) + Ak−1(z) exp
{

ak−1

(z0 − z)n

}
f (k−1) + · · · + A0(z) exp

{
a0

(z0 − z)n

}
f = 0,

where n ∈ N−{0}, k ≥ 2 is an integer and Aj(z)(j = 0, . . . , k −1) are analytic functions in the closed complex plane except
a singular point z0 and aj(j = 0, . . . , k − 1) are complex numbers. Under some conditions, we prove that these solutions
are of infinite order and their hyper-order is equal to n. We also consider the nonhomogeneous linear differential equations.
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1 Introduction and Main Results

Nevanlinna theory is a branch of complex analysis that studies the value distribution of meromorphic
functions. It provides essential tools to understand the growth and behavior of solutions of linear
differential equations, depending on the nature of the coefficients and the singularities involved.

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic function in the
complex plane C (see [2, 3, 14, 15, 16]). We denote respectively the order and the hyper-order of
growth of a meromorphic function f , by σ(f) and σ2(f).

Many authors as in ([4, 5, 6, 9, 12]) have studied the growth of solutions of linear differential
equations near a finite singular point. They have investigated different forms of linear differential
equations with analytic coefficients near a finite singular point by using adapted notions and prop-
erties of Nevanlinna theory. In this paper, we continue this investigation near a finite singular point.

First, we recall the appropriate definitions. Set C = C∪ {∞} and suppose that f is meromorphic
in C\{z0}, where z0 ∈ C. Define the counting function near z0 by

Nz0(r, f) = −
∫ r

∞

nz0(t, f) − nz0(∞, f)
t

dt − nz0(∞, f) log r,

25
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where nz0(t, f) counts the number of poles of f in the region {z ∈ C : t ≤ |z0 − z|} ∪ {∞}, each pole
according to its multiplicity, and the proximity function by

mz0(r, f) = 1
2π

∫ 2π

0
log+

∣∣∣f(z0 − reiϕ)
∣∣∣dϕ.

The characteristic function of f is defined in the usual manner by

Tz0(r, f) = mz0(r, f) + Nz0(r, f).

In addition, the order of a meromorphic function f near z0 is defined by

σT (f, z0) = lim sup
r→0

log+ Tz0(r, f)
− log r

.

For an analytic function f in C\{z0}, we have also the definition

σM (f, z0) = lim sup
r→0

log+ log+ Mz0(r, f)
− log r

,

where Mz0(r, f) = max|z0−z|=r |f(z)|.
When the order is infinite, we introduce the notion of hyper-order near z0 that is defined as follows:

σ2,T (f, z0) = lim sup
r→0

log+ log+ Tz0(r, f)
− log r

,

σ2,M (f, z0) = lim sup
r→0

log+ log+ log+ Mz0(r, f)
− log r

.

Remark 1.1 ([4]). It is shown in [9] that if f(z) is a non-constant meromorphic function on C\{z0}
and g(ω) = f(z0 − 1

ω ), then g(ω) is meromorphic on C and we have :

T (R, g) = Tz0( 1
R

, f),

where R > 0 and so σT (f, z0) = σ(g). Also, if f is analytic on C\{z0}, then g(ω) is entire, and
thus σT (f, z0) = σM (f, z0) and σ2,T (f, z0) = σ2,M (f, z0). Then we can use the notations σ(f, z0) and
σ2(f, z0) without any ambiguity.

The linear differential equation

f ′′ + A(z)eazf ′ + B(z)ebzf = 0, (1.1)

where A(z) and B(z) are entire functions is investigated by many authors; see for example [1, 2, 3,
10, 15]. Kwon [15] proved that if ab ̸= 0 and arg a ̸= arg b or a = cb with 0 < c < 1, then every
solution f ̸≡ 0 of equation (1.1) is of infinite order.

To investigate the counterpart of Kwon’s result near a finite singular point, Fettouch and Hamouda
proved the following result :
Theorem 1.1 ([9]). Let z0, a, b be complex constants, such that arg a ̸= arg b or a = cb (0 < c < 1).
Let A(z), B(z) ̸≡ 0 be analytic functions in C\{z0} with max{σ(A, z0), σ(B, z0)} < n. Then every
solution f ̸≡ 0 of the differential equation

f ′′ + A(z) exp
{

a

(z0 − z)n

}
f ′ + B(z) exp

{
b

(z0 − z)n

}
f = 0

satisfies σ(f, z0) = +∞ with σ2(f, z0) = n.

In [4], Cherief and Hamouda have generalized the above result to higher order differential equations
and proved the following result :
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Theorem 1.2 ([4]). Let n ∈ N\{0}, k ≥ 2 be an integer and Aj(z)(j = 0, ..., k − 1) be analytic
functions in C\{z0}, such that σ(Aj , z0) < n and let aj(j = 0, ..., k − 1) be complex numbers, such
that a0 = |a0|eiθ0, as = |as|eiθs, a0as ̸= 0 (0 < s < l ≤ k − 1), θ0, θs ∈ [0, 2π), θ0 ̸= θs, A0As ̸≡ 0 and
for j ̸= 0, s, aj satisfies either aj = dja0 (dj < 1) or arg aj = arg as. Then every solution f ̸≡ 0 of
the differential equation

f (k) + Ak−1(z) exp
{

ak−1

(z0 − z)n

}
f (k−1) + ... + A0(z) exp

{
a0

(z0 − z)n

}
f = 0 (1.2)

that is analytic in C\{z0} satisfies σ(f, z0) = +∞ and σ2(f, z0) = n .

Fan and Chen in [8] considered the linear differential equation

f (k) + Hk−1(z)f (k−1) + ... + H1(z)f ′ + H0(z)f = 0, (1.3)
where k ≥ 2 is an integer and Hj(z)(j = 0, 1, .., k −1) are entire functions. They proved the following
result :
Theorem 1.3. Let k ≥ 2 be an integer and aj(j = 0, ..., k − 1) be complex numbers. Suppose that
there exist as and al such that s < l, as = dse

iϕ, al = −dle
iϕ, ds > 0, dl > 0 and for j ̸= s, l,

aj = dje
iϕ or aj = −dje

iϕ(dj ≥ 0), and max{dj : j ̸= s, l} = d < min{ds, dl}. If Hj(z) = hj(z)eajzn,
where n ∈ N\{0} and hj(z) are entire functions with σ(hj) < n, hshl ̸≡ 0, then every transcendental
solution f of equation (1.3) is of infinite order and satisfies σ2(f) = n.

In 2017, K. Hamani and B. Belaidi have studied the linear differential equation

f (k) + hk−1(z)ePk−1(z)f (k−1) + ... + h1(z)eP1(z)f ′ + h0(z)eP0(z)f = 0, (1.4)
where hj(z)(j = 0, ..., k − 1) are meromorphic functions and Pj(z)(j = 0, ..., k − 1) are polynomials.
They proved the following Theorem
Theorem 1.4 ([11]). Let k ≥ 2 be an integer and Pj(z) = ∑n

i=0 ai,jz
i(j = 0, 1, ..., k−1) be polynomials

with degree n ≥ 1, where a0,j , ..., an,j(j = 0, ..., k −1) are complex numbers. Let hj(z)(j = 0, ..., k −1)
be meromorphic functions with σ(hj) < n.

If hj ̸≡ 0, then an,j ̸= 0. Suppose that there exists
{

an,i1 , an,i2 , ..., an,im

}
⊂

{
an,1, an,2, ..., an,k−1

}
such that arg an,ij (j = 1, 2, ..., m) are distinct and for every nonzero an,l ∈

{
an,1, an,2, ..., an,k−1

}
\{

an,i1 , an,i2 , ..., an,im

}
there exists some an,ij ∈

{
an,i1 , an,i2 , ..., an,im

}
such that an,l = c

(ij)
l an,ij (0 <

c
(ij)
l < 1). Then every transcendental meromorphic solution f whose poles are of uniformly bounded

multiplicity of equation (1.4) is of infinite order and satisfies σ2(f) = n. Furthermore, if an,0 = an,ij0

or an,0 = c
ij0
0 an,ij0

(0 < c
ij0
0 ̸= c

ij0
s < 1), where s ∈

{
1, ..., k − 1

}
and an,ij0

∈
{

an,i1 , an,i2 , ..., an,im

}
,

then every meromorphic solution f (̸≡ 0) whose poles are of uniformly bounded multiplicity of equation
(1.4) is of infinite order and satisfies σ2(f) = n.

In this paper, we investigate similar results as in Theorem 1.3 and Theorem 1.4 but specifically
for linear differential equations of the form (1.2), where Aj(z)(j = 0, ..., k − 1) are analytic functions
near a singular point z0 and aj(j = 0, ..., k − 1) are complex numbers. We use adapted notions and
properties of Nevanlinna theory near a singular point and introduce new lemmas we recently proved.
We continue to study the growth of analytic solutions of equations of the form (1.2) by considering
certain conditions on the coefficients that guarantee that every non-constant analytic solution of (1.2)
is of infinite order and hyper-order equal to n. We will also consider the non-homogeneous case. We
will prove the following results:
Theorem 1.5. Let n ∈ N\{0}, k ≥ 2 be an integer and Aj(z)(j = 0, ..., k − 1) be analytic functions
in C\{z0}, such that σ(Aj , z0) < n. Suppose that there exist s, l ∈ {1, ..., k − 1} such that AsAl ̸≡ 0,
as = dse

iϕ, al = −dle
iϕ, ϕ ∈ [0, 2π), ds > 0, dl > 0 and for j ̸= s, l, aj = dje

iϕ or aj = −dje
iϕ(dj ≥

0) and max{dj : j ̸= s, l} = d < min{ds, dl}. Then every non-constant solution f of equation (1.2)
that is analytic in C\{z0} is of infinite order and satisfies σ2(f, z0) = n, where z0 is an essential
singular point for f .
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Theorem 1.6. Let n ∈ N\{0}, k ≥ 2 be an integer and Aj(z)(j = 0, ..., k − 1) be analytic functions
in C\{z0}, such that σ(Aj , z0) < n. Suppose that there exists {ai0 , ai1 , ..., aim} ⊂ {a1, ..., ak−1} such
that arg aij (j = 1, .., m) are distinct and for every nonzero al ∈ {a1, ..., ak−1} \ {ai1 , ..., aim}, there
exists some ais ∈ {ai1 , ..., aim} such that al = c

(is)
l ais(0 < c

(is)
l < 1). Then every non-constant solution

f of equation (1.2) that is analytic in C\{z0} is of infinite order and satisfies σ2(f, z0) = n, where
z0 is an essential singular point for f .
Theorem 1.7. Let n ∈ N\{0}, k ≥ 2 be an integer, Aj(z) and aj(j = 0, ..., k − 1) satisfy hypotheses
of Theorem 1.5 or those of Theorem 1.6 . Let F ̸≡ 0 be an analytic function in C\{z0} of order
σ = σ(F, z0) < n. Then every solution f of equation

f (k) + Ak−1(z) exp
{

ak−1

(z0 − z)n

}
f (k−1) + ... + A0(z) exp

{
a0

(z0 − z)n

}
f = F (1.5)

that is analytic in C\{z0} is of infinite order and satisfies σ2(f, z0) = n, where z0 is an essential
singular point for f , with at most one exceptional analytic solution f0 of finite order in C\{z0}, where
z0 is an essential singular point for f0.

2 Preliminary Lemmas

Lemma 2.1 ([9]). Let f be a non-constant meromorphic function in C\{z0}. Let α > 0 be a given
real constant and j ∈ N. Then there exists a set E1 ⊂ (0, 1) of finite logarithmic measure, that is∫ 1

0 χE1(t)dt
t < ∞ and a constant A > 0 that depends on α and j, such that for all r = |z − z0|

satisfying r /∈ E1, we have ∣∣∣∣f (j)(z)
f(z)

∣∣∣∣ ≤ A

[ 1
r2 Tz0(αr, f) log Tz0(αr, f)

]j

,

where χE1 is the characteristic function of the set E1.
Lemma 2.2 ([7]). Let f be a non-constant analytic function in C\{z0}. For |z0 − z| = r, let
zr = z0 − reiθr be a point satisfying |f(zr)| = max|z0−z|=r|f(z)|. Then there exist a constant δr > 0
and a set E2 ⊂ (0, 1) of finite logarithmic measure, such that for all z satisfying | z0 − z |= r /∈ E2,
r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have∣∣∣∣ f(z)

f (j)(z)

∣∣∣∣ ≤ 2rj (j ∈ N),

where z0 is an essential singular point for f .
Lemma 2.3 ([9]). Let A(z) be an analytic function in C\{z0} with σ(A, z0) < n (n ∈ N\{0}). Set
g(z) = A(z) exp

{
a

(z0−z)n

}
, where a = α + iβ ̸= 0 is a complex number, z0 − z = reiϕ, δa(ϕ) =

α cos(nϕ) + β sin(nϕ), and H = {ϕ ∈ [0, 2π) : δa(ϕ) = 0} (obviously , H is a finite set). Then for
any given ε > 0 and for any ϕ ∈ [0, 2π)\H, there exists r0 > 0, such that for 0 < r < r0, we have
(i) if δa(ϕ) > 0, then

exp
{

(1 − ε)δa(ϕ) 1
rn

}
⩽ |g(z)| ⩽ exp

{
(1 + ε)δa(ϕ) 1

rn

}
, (2.1)

(ii) if δa(ϕ) < 0, then

exp
{

(1 + ε)δa(ϕ) 1
rn

}
⩽ |g(z)| ⩽ exp

{
(1 − ε)δa(ϕ) 1

rn

}
. (2.2)

Lemma 2.4 ([4]). Let k ≥ 2 be an integer and Aj(z)(j = 0, ..., k−1) be analytic functions in C\{z0},
such that σ(Aj , z0) ⩽ α < ∞. If f is a solution of equation

f (k) + Ak−1(z)f (k−1) + ... + A1(z)f + A0(z)f = 0 (2.3)

that is analytic in C\{z0}, then σ2(f, z0) ⩽ α.
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Lemma 2.5 ([7]). Let k ≥ 2 be an integer, Aj(z)(j = 0, ..., k−1) and F ( ̸≡ 0) be analytic functions in
C\{z0}, such that max

{
σ(Aj , z0), σ(F, z0)

}
≤ α < ∞. If f is an infinite order solution of equation

f (k) + Ak−1(z)f (k−1) + ... + A1(z)f ′ + A0(z)f = F (2.4)

that is analytic in C\{z0}, then σ2(f, z0) ≤ α.

3 Proof of Theorems

Proof of theorem 1.5. Assume that f is a non-constant analytic solution in C\{z0} of equation
(1.2), where z0 is an essential singular point for f .

By Lemma 2.1, there exist a set E1 ⊂ (0, 1) of finite logarithmic measure and a constant λ > 0,
such that for all r = |z0 − z| satisfying r /∈ E1, we have∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ λ

[1
r

Tz0(αr, f)
]2j

(j = 1, ..., k). (3.1)

For each sufficiently small |z0−z| = r, let zr = z0−reiθr be a point satisfying |f(zr)| = max|z0−z|=r |f(z)|.
By Lemma 2.2, there exist a constant δr > 0 and a set E2 ⊂ (0, 1) of finite logarithmic measure,

such that for all z satisfying |z0 − z| = r /∈ E2, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have∣∣∣∣ f(z)
f (j)(z)

∣∣∣∣ ≤ 2rj (j = 1, ..., k). (3.2)

Set
H = {θ ∈ [0, 2π) : cos(ϕ + nθ) = 0 }.

For any given θ ∈ [θr − δr, θr + δr] \ H, we have
cos(ϕ + nθ) > 0 or cos(ϕ + nθ) < 0.

Case 1. cos(ϕ + nθ) > 0. Thus by Lemma 2.3, for any given ε(0 < 2ε < ds−d
ds+d), for all z satisfying

|z0 − z| = r, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ H, we have∣∣∣∣As(z) exp
{

as

(z0 − z)n

}∣∣∣∣ ≥ exp
{

(1 − ε)ds cos(ϕ + nθ)
rn

}
(3.3)

and ∣∣∣∣Aj(z) exp
{

aj

(z0 − z)n

}∣∣∣∣ ≤ exp
{

(1 + ε)d cos(ϕ + nθ)
rn

}
(j ̸= s). (3.4)

By (1.2), it follows that

−As(z) exp
{ as

(z0 − z)n

}
= f (k)

f (s) +
k−1∑

j=s+1
Aj(z) exp

{ aj

(z0 − z)n

}f (j)

f (s) +
s−1∑
j=0

Aj(z) exp
{ aj

(z0 − z)n

}f (j)

f

f

f (s) .

(3.5)
Substituting (3.1), (3.2), (3.3), (3.4) into (3.5), for all z satisfying |z0 − z| = r /∈ E1 ∪ E2, r → 0 and
arg z = θ ∈ [θr − δr, θr + δr] \ H, we obtain

exp
{

(1 − ε)ds cos(ϕ + nθ)
rn

}
≤ M1rs exp

{
(1 + ε)d cos(ϕ + nθ)

rn

}[
Tz0(αr, f)

r

]2k

, (3.6)

where M1(> 0) is a constant. Hence by (3.6), we obtain σ(f, z0) = +∞ and σ2(f, z0) ≥ n. On the
other hand, by Lemma 2.4, we have σ2(f, z0) ≤ n. Hence σ2(f, z0) = n.

Case 2. cos(ϕ+nθ) < 0. We use the same reasoning as in the case 1 by replacing As(z) exp
{

as

(z0−z)n

}
by Al(z) exp

{
al

(z0−z)n

}
to prove that σ(f, z0) = +∞ and σ2(f, z0) ≥ n. From this and Lemma 2.4,

we have σ2(f, z0) = n.
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Proof of theorem 1.6. Assume that f is a non-constant analytic solution in C\{z0} of equation
(1.2), where z0 is an essential singular point for f .

By Lemma 2.1, there exist a set E1 ⊂ (0, 1) of finite logarithmic measure and a constant λ > 0,
such that for all r = |z0 − z| satisfying r /∈ E1, we have (3.1).

For each sufficiently small |z0 − z| = r, let zr = z0 − reiθr be a point satisfying |f(zr)| =
max|z0−z|=r |f(z)|.

By Lemma 2.2, there exist a constant δr > 0 and a set E2 ⊂ (0, 1) of finite logarithmic measure,
such that for all z satisfying |z0 − z| = r /∈ E2, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have
(3.2).

Set
H1 = ∪k−1

j=0{θ ∈ [0, 2π) : δaj (θ) = 0}
and

H2 = ∪1≤s<d≤m{θ ∈ [0, 2π) : δas(θ) = δad
(θ)}.

For any given θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2), we have δaj (θ) ̸= 0 (j = 0, ..., k − 1), δas(θ) ̸=
δad

(θ) (1 ≤ s < d ≤ m).
Since aij (j = 1, ..., m) are distinct complex numbers, then there exists only one t ∈ {1, ..., m},

such that
δt = δait

(θ) = max{δaij
(θ) : j = 1, ..., m}.

For any given θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2), we have δait
(θ) > 0 or δait

(θ) < 0.

Case 1. δt > 0. For l ∈ {0, ..., k − 1} \ {i1, ..., im}, we have al = c
(it)
l ait or al = c

(is)
l ais s ̸= t.

Hence for l ∈ {0, ..., k − 1} \ {i1, ..., im}, we have δl(θ) < δt.
Set δ = max{δaj (θ) : j ̸= it}, thus δ < δt.

Subcase 1.1. δ > 0. Thus, by Lemma 2.3, for any given ε(0 < 2ε < δt−δ
δt+δ ), for all z satisfying

|z0 − z| = r , r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2), we have∣∣∣∣Ait(z) exp
{

ait

(z0 − z)n

}∣∣∣∣ ≥ exp
{

(1 − ε) δt

rn

}
(3.7)

and ∣∣∣∣Aj(z) exp
{

aj

(z0 − z)n

}∣∣∣∣ ≤ exp
{

(1 + ε) δ

rn

}
(j ̸= it). (3.8)

We can rewrite (1.2) as

−Ait(z) exp
{ ait

(z0 − z)n

}
= f (k)

f (it) +
k−1∑

j=it+1
Aj(z) exp

{ aj

(z0 − z)n

} f (j)

f (it) +
it−1∑
j=0

Aj(z) exp
{ aj

(z0 − z)n

}f (j)

f

f

f (it) .

(3.9)
Substituting (3.1), (3.2), (3.7), (3.8) into (3.9), for all z satisfying |z0 − z| = r, r /∈ E1 ∪ E2, r → 0
and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ H1 ∪ H2, we obtain

exp
{

(1 − ε) δt

rn

}
≤ M2rit exp

{
(1 + ε) δ

rn

}[
Tz0(αr, f)

r

]2k

, (3.10)

where M2(> 0) is a constant. Hence by (3.10), we obtain σ(f, z0) = +∞ and σ2(f, z0) ≥ n. On the
other hand, by Lemma 2.4, we have σ2(f, z0) ≤ n. Hence σ2(f, z0) = n.
Subcase 1.2. δ < 0. By Lemma 2.3, for any given ε(0 < 2ε < 1), for all z satisfying |z0−z| = r, r → 0
and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2), we have (3.7) and∣∣∣∣Aj(z) exp

{
aj

(z0 − z)n

}∣∣∣∣ ≤ exp
{

(1 − ε)
δaj (θ)

rn

}
< 1 (j ̸= it). (3.11)
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Substituting (3.1), (3.2), (3.7), (3.11) into (3.9), for all z satisfying |z0 − z| = r, r /∈ E1 ∪ E2, r → 0
and arg(z0 − z) = θ ∈ [θr − δr, θr + δr]\ /∈ H1 ∪ H2, we obtain

exp
{

(1 − ε) δt

rn

}
≤ M3rit

[
Tz0(αr, f)

r

]2k

, (3.12)

where M3(> 0) is a constant. Hence by (3.12), we obtain σ(f, z0) = +∞ and σ2(f, z0) ≥ n. On the
other hand, by Lemma 2.4, we have σ2(f, z0) ≤ n. Hence σ2(f, z0) = n.

Case 2. δt < 0. Set c = min{c
(ij)
l : l ∈ {0, ..., k − 1} \ {i1, ..., im} and j = 1, ...m}.

By Lemma 2.3, for any given ε(0 < 2ε < 1), for all z satisfying |z0−z| = r, r → 0 and arg(z0−z) =
θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2), we have∣∣∣∣Aj(z) exp

{
aj

(z0 − z)n

}∣∣∣∣ ≤ exp
{

(1 − ε)cδt

rn

}
(j = 0, .., k − 1). (3.13)

By (1.2), we get

−1 = Ak−1(z) exp
{ ak−1

(z0 − z)n

}f (k−1)

f

f

f (k) + ... + A0(z) exp
{ a0

(z0 − z)n

} f

f (k) . (3.14)

Substituting (3.1), (3.2), (3.13) into (3.14), for all z satisfying |z0 − z| = r, r /∈ E1 ∪ E2, r → 0 and
arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2), we obtain

1 ≤ M4rk exp
{

(1 + ε)cδt

rn

}[
Tz0(αr, f)

r

]2k

, (3.15)

where M4(> 0) is a constant. Hence by (3.15), we obtain σ(f, z0) = +∞ and σ2(f, z0) ≥ n. On the
other hand, by Lemma 2.4, we have σ2(f, z0) = n.

Proof of theorem 1.7. First we show that (1.5) can possess at most one exceptional analytic
solution f0 of finite order in C\{z0}.

In fact, if f∗ is another analytic solution in C\{z0} of finite order of equation (1.5) where z0
is an essential singular point for f∗, then f0 − f∗ is a non-constant analytic solution in C\{z0} of
finite order of the corresponding homogeneous equation of (1.5). This contradicts Theorem 1.5 and
Theorem 1.6.

We assume that f is an infinite order analytic solution in C\{z0} of equation (1.5), where z0 is
an essential singular point for f . By Lemma 2.1, there exist a set E1 ⊂ (0, 1) of finite logarithmic
measure and a constant λ > 0, such that for all z satisfying |z0 − z| = r /∈ E1, we have (3.1).

For each sufficiently small |z0 − z| = r, let zr = z0 − reiθr be a point satisfying |f(zr)| =
max|z0−z|=r |f(z)|. By Lemma 2.2, there exist a constant δr > 0 and a set E2 ⊂ (0, 1) of finite loga-
rithmic measure such that for all z satisfying |z0 −z| = r /∈ E2 and arg(z0 −z) = θ ∈ [θr − δr, θr + δr],
we have (3.2). Since |f(z)| is continous in |z0 − z| = r, then there exists a constant λr > 0 such that
for all z satisfying |z0 − z| = r sufficiently small and arg(z0 − z) = θ ∈ [θr − λr, θr + λr], we have

1
2 |f(zr)| < |f(z)| <

3
2 |f(zr)|. (3.16)

On the other hand, for any given ε(0 < 2ε < n − σ), there exists r0 > 0, such that for all 0 < r =
|z0 − z| < r0, we have

|F (z)| ≤ exp
{ 1

rσ+ε

}
. (3.17)

Since Mz0(r, f) ≥ 1 as r → 0, it follows from (3.16) and (3.17) that∣∣∣∣F (z)
f(z)

∣∣∣∣ ≤ 2 exp
{ 1

rσ+ε

}
as r → 0. (3.18)
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Set γ = min{δr, λr}.
(i) Suppose that aj(j = 0, .., k − 1) satisfy hypotheses of Theorem 1.5.

Case 1. cos(ϕ + nθ) > 0. From (3.1), (3.2), (3.3), (3.4), (3.18) and (1.5), for all z satisfying
|z0 − z| = r /∈ E1 ∪ E2, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ H(H is defined above), we
obtain

exp
{

(1 − ε)ds cos(ϕ + nθ)
rn

}
≤ B1rs exp

{ 1
rσ+ε

}
exp

{
(1 + ε)d cos(ϕ + nθ)

rn

}[
Tz0(αr, f)

r

]2k

, (3.19)

where B1(> 0) is a constant. From (3.19), we get σ2(f, z0) ≥ n. This and the fact that σ2(f, z0) ≤ n
by Lemma 2.5, we have σ2(f, z0) = n.

Case 2. cos(ϕ+nθ) < 0. We use the same reasoning as in the case 1 by replacing As(z) exp
{

as

(z0−z)n

}
by Al(z) exp

{
al

(z0−z)n

}
to prove that σ2(f, z0) ≥ n. This and the fact that σ2(f, z0) ≤ n yield

σ2(f, z0) = n.
(ii) Suppose that aj(j = 0, .., k − 1) satisfy hypotheses of Theorem 1.6.
Since aij (j = 1, ..., m) are distinct complex numbers, then there exists only one t ∈ {1, ..., m} such
that

δt = δait
(θ) = max{δaij

(θ) : j = 1, ..., m}.

For any given θ ∈ [θr − γ, θr + γ] \ (H1 ∪ H2), where H1 and H2 are defined above, we have
δait

(θ) > 0 or δait
(θ) < 0.

Case 1. δt > 0. For l ∈ {0, ..., k − 1} \ {i1, ..., im}, we have al = c
(it)
l ait or al = c

(is)
l ais s ̸= t.

Hence for l ∈ {0, ..., k − 1} \ {i1, ..., im}, we have δl < δt.
Set δ = max{δaj (θ) : j ̸= it} thus δ < δt.
Subcase 1.1. δ > 0. From (3.1), (3.2), (3.7), (3.8), (3.18) and (1.5) for all z satisfying |z0 − z| = r,
r /∈ E1 ∪ E2, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ H1 ∪ H2, we obtain

exp
{

(1 − ε) δt

rn

}
≤ B2rit exp

{ 1
rσ+ε

}
exp

{
(1 + ε) δ

rn

}[
Tz0(αr, f)

r

]2k

, (3.20)

where B2(> 0) is a constant. Hence by (3.20), we obtain that σ2(f, z0) ≥ n. This and the fact that
σ2(f, z0) ≤ n by Lemma 2.5, we have σ2(f, z0) = n.
Subcase 1.2. δ < 0. From (3.1), (3.2), (3.7), (3.13), (3.18) and (1.5) for all z satisfying |z0 − z| = r,
r /∈ E1 ∪ E2, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ H1 ∪ H2, we obtain

exp
{

(1 − ε) δt

rn

}
≤ B3rit exp

{ 1
rσ+ε

}[
Tz0(αr, f)

r

]2k

, (3.21)

where B3(> 0) is a constant. Hence by (3.21), we obtain that σ2(f, z0) ≥ n. This and the fact that
σ2(f, z0) ≤ n by Lemma 2.5, we have σ2(f, z0) = n.
Case 2. δt < 0. Set c = min

{
c

(ij)
l : l ∈ {0, ..., k − 1} \ {i1, ..., im} and j = 1, .., m

}
.

From (3.1), (3.2), (3.13), (3.18) and (1.5) for all z satisfying |z0 − z| = r, r /∈ E1 ∪ E2, r → 0 and
arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ (H1 ∪ H2), we obtain

1 ≤ B4rk exp
{ 1

rσ+ε

}
exp

{
(1 + ε)cδt

rn

}[
Tz0(αr, f)

r

]2k

, (3.22)

where B4(> 0) is a constant. Hence by (3.22), we obtain that σ2(f, z0) ≥ n. This and the fact that
σ2(f, z0) ≤ n by Lemma 2.5, we have σ2(f, z0) = n.
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