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Approximate strong subdifferential
calculus for convex set-valued mappings
and applications to set optimization
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Abstract

In this paper, we are mainly concerned with a rule for approximate strong subdifferential, concerning the sum and the
composition of cone-convex set-valued vector mappings, taking values in finite or infinite-dimensional preordred spaces. The
obtained formulas is exact and holds under the connectedness conditions. This formula is applied to establish approximate
necessary and sufficient optimality conditions for the existence of the approximate strong efficient solutions of a set-valued
vector optimization problem.

Keywords. Set-valued vector optimization, Strong subdifferential of convex set-valued mappings,
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1 Introduction

The approximate subdifferential is one of the most important concepts in Convex Analysis and
Optimization. It is well known that strong vector subdifferential calculus plays an important role
in vector optimization problems. knows these last decades a growing progress from a point of view
of theoretical background (see [2, 12, 13]). In [2], several properties and calculus rules have been
established for the approximate strong vector subdifferential of the sum of two vector valued mappings
in the framework of ordered complete topological vector space, by using the so-called sandwich
theorem, he has obtained the following formula expressing the calculus rules of the approximate
strong subdifferential for the sum of two convex single vector mappings g1, g2 : X → Y ∪ {+∞Y }

∂s
ε(g1 + g2)(x̄) =

⋃
ε1, ε2∈Y+
ε1+ε2=ε

∂s
ε1g1(x̄) + ∂s

ε2g2(x̄), (1.1)

where ∂sgi(x̄) is the approximate strong subdifferential at x̄ and X is a locally convex space, Y is a
partially ordered vector space by a cone Y+ and +∞Y is an abstract maximal element of the space Y.

Recently, Laghdir et al. established in [1], the approximate strong vector subdifferential calculus
of the composed convex operator f + g ◦ h when f , g and h are vector valued convex mappings and
g is nondecreasing.

∂s
ε(f + g ◦ h)(x̄) =

⋃
ε1, ε2,ε3∈K

ε1+ε2+ε3=ε

{∂s
ε1f(x̄) + ∂s

ε2(A ◦ h)(x̄), A ∈ ∂s
ε3g(h(x̄))}, ∀ε ∈ Y+. (1.2)
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In this article, our main objective is to attempt to prove that the equalities (1.1) and (1.2) hold in
the setting of set-valued cone-convex mappings, which until now knew no attempt. Our main result
enables us to establish the existence of approximate Lagrange multipliers for a general cone-convex
set-valued optimization problem.

The paper is organized as follows. Section 2 contains preliminary material. Section 3 is devoted
to stating the strong subdifferential calculus rules of the sum and the composition of cone-convex
set-valued mappings. In Section 4, we derive from the obtained formulas the approximate optimality
conditions for a set-valued cone-convex constrained optimization problem.

2 Preliminaries

Throughout this paper, X and Y are two Hausdorff locally convex topological vector spaces and
Y is ordered through an ordering cone K, i.e.,

y1, y2 ∈ Y, y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K,

where K is assumed to be nontrivial (K ̸= ∅), convex, closed, pointed K ∩ −K = {0Y } and with
nonempty topological interior. We define the element +∞Y as the supremum in Y with respect to
the ordering K. In other words, it holds that y ≤K +∞Y , for any y ∈ Y , and if there exists y ∈ Y
such that +∞Y ≤K y, then y = +∞Y . The algebraic operations in Y are extended as follows

+∞Y + y = y + (+∞Y ), α(+∞Y ) = +∞Y , ∀y ∈ Y, ∀α > 0.

For every two nonempty subsets A, B ⊂ Y and α ∈ R, we denote

A + B := {a + b : (a, b) ∈ A × B}, αA := {αa : a ∈ A}.

When A = ∅ , we set B + ∅ = ∅ + B = ∅ and α∅ = ∅. For the sake of simplicity, we write y + A
instead of {y} + A for all y ∈ Y .

The order interval between two elements u and v of Y such that u ≤K v is the subset

[u, v] := {w ∈ Y : u ≤K w ≤K v}.

A subset B of Y is order bounded if there exist u, v in Y such that B ⊆ [u, v]. A subset B of Y is
majorized (resp. minorized) if there is an element b ∈ B such that v ≤K b (resp. b ≤K v ) for all
v ∈ B. For the subset B ⊂ Y , if there exists v ∈ Y such that

(i) b ≤K v for all b ∈ B,
(ii) v ≤K w whenever b ≤K w for all b ∈ B,

then v is called the supremum of B and we write v = sup B. We write the infimum of B, as inf B.
We say that (Y, K) is order complete, if every minorized subset of Y has an infimum. This is, in
fact, equivalent to saying that every majorized subset of Y has a supremum. In addition, (Y, K) is
order complete lattice, if (Y, K) is order complete and for any pair of elements u, v in Y , sup(u, v)
and inf(u, v) exists in Y . We will often assume that K is normal, i.e., there exists a basis of open
neighbourhoods B of the origin such that

W = (W − K) ∩ (W + K), ∀W ∈ B.

Given an arbitrary set-valued mapping G : X ⇒ Y , we denote the effective domain, image, graph,
and epigraph of G by domG, ImG, grG and epiKG respectively, i.e.,

domG := {x ∈ X : G(x) ̸= ∅},

grG := {(x, y) ∈ X × Y : y ∈ G(x)},

ImG :=
⋃

x∈X

G(x),
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and
epiK G := gr(G + K) = {(x, y) ∈ X × Y : y ∈ G(x) + K},

where
(G + K)(x) = G(x) + K, ∀x ∈ X.

Definition 2.1. [8] The set-valued mapping G is said to be

1) K-convex, if its epigraph is a convex subset of X × Y .
2) Proper, if its effective domain domG ̸= ∅.

Let us recall the concept of connectedness and the concept of continuity of a set-valued mapping.
Definition 2.2. [6, 14] Let G : X ⇒ Y be a set-valued mapping.

1) G is said to be connected at x0 ∈ X, if there exists a mapping g : X → Y satisfaying g(v) ∈ G(v)
for all v in some neighborhood of x0 and g is continuous at x0.

2) G is said to be upper-semicontinuous at x0, if for any open subset V ⊇ G(x0), there exists a
neighborhood U of x0, such that G(U) ⊆ V .

3) G is said to be lower-semicontinuous at x0, if for any open subset V satisfying V ∩ G(x0) ̸= ∅,
there exists a neighborhood U of x0, such that G(U) ∩ V ̸= ∅.

We say that G is continuous at x0, if it is upper-semicontinuous and lower-semicontinuous at x0
and we say that G is continuous on X, if it is continuous at each point x ∈ X.

The following definition introduces the well-known concepts of approximate strong minimal of a
nonempty subset B ⊂ Y .
Definition 2.3. [4] Let B ⊂ Y be a nonempty subset and ε ∈ K. ȳ ∈ B is said to be a strongly
ε-minimal point of the subset B, if B ⊆ ȳ − ε + K.

Consider now the following set-valued optimization problem

(PS)
{

Min G(x),
x ∈ S,

where G : X ⇒ Y is a proper set-valued mapping and S ⊂ X is the feasible set.
Definition 2.4. Let ε ∈ K, a pair (x̄, ȳ) ∈ X × Y is said to be strong ε-minimum solution of (PS),
if x̄ ∈ S and ȳ is a strongly ε-minimal point of the subset G(S), i.e.

ȳ ≤K y + ε, ∀x ∈ S, ∀y ∈ G(x).

The set of strong ε-minimum solutions of (PS) will be denoted by Kε,s(G, S, K).
Definition 2.5. [3, 6] Let G : X ⇒ Y be a set-valued mapping, (x̄, ȳ) ∈ grG and ε ∈ K. The
approximate strong subdifferential of G at (x̄, ȳ) is defined as the following

∂s
εG(x̄, ȳ) := {T ∈ L(X, Y ) : T (x − x̄) ≤K y − ȳ + ε, ∀(x, y) ∈ grG},

where L(X, Y ) is the set of all continuous linear operators from X into Y .

This definition is justified by the importance of the following immediate property
(x̄, ȳ) ∈ Kε,s(G, S, K) ⇐⇒ 0 ∈ ∂s

εG(x̄, ȳ). (2.1)
Clearly ∂s

ε1G(x̄, ȳ) ⊆ ∂s
ε2G(x̄, ȳ) whenever ε1 ≤K ε2, and

∂sG(x̄, ȳ) = ∂s
0Y

G(x̄, ȳ) =
⋂

ε∈intK
∂s

εG(x̄, ȳ).

By convention we take ∂s
εG(x̄, ȳ) = ∅ if (x̄, ȳ) /∈ grG and we say that G is strongly ε-subdifferentiable

at (x̄, ȳ), if ∂s
εG(x̄, ȳ) ̸= ∅.

The following example shows the importance of the concept of the approximate Pareto subdiffer-
ential.
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Example 2.1. Let X = R, Y = R, K = R+ and G : X ⇒ Y defined by

G(x) =
{

[−
√

x,
√

x ], if x ≥ 0 ,

∅, otherwise .

It is easy to that ∂sG(0, 0) = ∅ and for any ε > 0, we have

∂s
εG(0, 0) = {α ∈ R : α ≤ −1

4ε
}.

3 Strong subdifferential calculus rules

In this section, we are concerned with the subdifferential calculus of the sum and composition of
convex set-valued mappings.

3.1 Addition

In [2], Théra established in the framework of ordered complete topological vector space, the
following theorem, which will play an important role in proving our main results.
Theorem 3.1. [2] Let g1, g2 : X → Y ∪ {+∞Y } be two K-convex single vector valued mappings.
Suppose that the following conditions is satisfied.

(H1)
{

(Y, K) is a normal order complete Hausdorff locally convex topological vector space,
g1 is continuous at x̄ ∈ domg1 ∩ domg2.

Then,
∂s

ε(g1 + g2)(x̄) =
⋃

ε1, ε2∈K

ε1+ε2=ε

∂s
ε1g1(x̄) + ∂s

ε2g2(x̄), ∀ε ∈ K. (3.1)

Remark 3.1. The continuity assumption in (H1) is not merely a technical condition; it is essential
to guarantee the exactness of the formula (3.1) Intuitively, continuity ensures that the epigraphs of
the functions f and g behave well locally, allowing the subgradients to combine properly without loss
of information.

More precisely, continuity at a point x0 ∈ dom(f) ∩ dom(g) acts as a constraint qualification
that prevents pathological phenomena such as "vertical walls" or jumps in the epigraph, which would
otherwise break the equality.

In the context of set-valued (multivalued) mappings, continuity is often used as a key assump-
tion to ensure the validity of certain calculus rules, such as the subdifferential or coderivative sum
rules. However, several authors have noted that continuity may be too strong or inappropriate in
some nonsmooth or irregular settings. To extend classical results—such as the Moreau–Rockafellar
theorem—to broader frameworks, some researchers have proposed replacing continuity with a the
connectedness of the mapping at a given point, as introduced by [7, 11].

Let us consider the vector indicator mapping δv
C : X → Y ∪{+∞Y } of a nonempty subset C ⊆ X,

defined by

δv
C(x) :=

{
0Y , if x ∈ C,

+∞Y , else.

Let us note that epiδv
C = C × K and therefore the K-convexity of δv

C follows from the convexity of
C and K.
Theorem 3.2. Let G1, G2 : X ⇒ Y be two K-convex set-valued mappings, x̄ ∈ domG1 ∩ domG2,
ū ∈ G1(x̄) and v̄ ∈ G2(x̄). Suppose that the following condition is satisfied
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(H2) (Y, K) is order complete Hausdorff locally convex topological vector space and int(epiG1) ∩
epiG2 ̸= ∅.

Then,
∂s

ε(G1 + G2)(x̄, ū + v̄) =
⋃

ε1, ε2∈K

ε1+ε2=ε

∂s
ε1G1(x̄, ū) + ∂s

ε2G2(x̄, v̄), ∀ε ∈ K.

Proof. Let A ∈ ∂s
ε1G1(x̄, ū) and B ∈ ∂s

ε2G2(x̄, v̄) with ε1 +ε2 = ε. For any (x, y) ∈ gr(G1 +G2), there
exist u ∈ G1(x) and v ∈ G2(x) such that y = u + v. Hence, we get

A(x − x̄) ≤K u − ū + ε1, (3.2)

and
B(x − x̄) ≤K v − v̄ + ε2. (3.3)

By adding (3.2) and (3.3), it follows that

(A + B)(x − x̄) ≤K y − (ū + v̄) + ε, ∀(x, y) ∈ gr(G1 + G2),

which means that A+B ∈ ∂s
ε(G1 +G2)(x̄, ū+ v̄). For the reverse inclusion, let T ∈ ∂s

ε(G1 +G2)(x̄, ū+
v̄), i.e.

y − (ū + v̄) − T (x − x̄) + ε ≥K 0Y , ∀(x, y) ∈ gr(G1 + G2),
which yields that for any x ∈ domG1 ∩ domG2, u ∈ G1(x), v ∈ G2(x) and α, β ∈ K

u + α + v + β − (ū + v̄) − T (x − x̄) + ε ≥K 0Y ,

and thus, it follows that for any (x, u, v) ∈ X × Y × Y

δv
epiG1(x, u) + δv

epiG2(x, v)u + v − (ū + v̄) − T (x − x̄) + ε ≥K 0Y , (3.4)

For any (x, u, v) ∈ X × Y × Y , we define the following single-vector mappings

g1(x, u, v) := δv
epiG1(x, u) + u − ū − T (x − x̄),

g2(x, u, v) := δv
epiG2(x, v) + v − v̄.

Let us observe that domg1 = epiG1 × Y and domg2 = φ−1(epiG2), where φ is a continuous function
defined from X × Y × Y into X × Y by φ(x, u, v) := (x, v) for all (x, u, v) ∈ X × Y × Y. Obviously, g1
and g2 are proper, convex and g1 is continuous at x̄ ∈ domg1 ∩domg2. Moreover, it follows from (3.4)
that (0, 0, 0) ∈ ∂s

ε(g1 + g2)(x̄, ū, v̄) and hence by Theorem 3.1, we assert that there exist ε1, ε2 ∈ K
satisfying ε1 + ε2 = ε and

(0, 0, 0) ∈ ∂s
ε1g1(x̄, ū, v̄) + ∂s

ε2g2(x̄, ū, v̄).
Thus there exist (T1, A1, B1) ∈ ∂s

ε1g1(x̄, ū, v̄) such that (−T1, −A1, −B1) ∈ ∂s
ε1g2(x̄, ū, v̄) satisfying{

T1(x − x̄) + A1(u − ū) + B1(v − v̄) ≤K u − ū − T (x − x̄) + ε1, ∀(x, u, v) ∈ domg1, (3.5)
−T1(x − x̄) − A1(u − ū) − B1(v − v̄) ≤K v − v̄ + ε2, ∀(x, u, v) ∈ domg2. (3.6)

By taking x = x̄ and u = ū in (3.5), we get B1(v − v̄) ≤K ε1, for any v ∈ Y , since K is closed and
pointed (K ∩ −K = {0Y }), it follows that B1 = 0. Similarly, by taking x = x̄ and v = v̄ in (3.6), we
get −A1(u − ū) ≤K ε2, for all u ∈ Y and thus A1 = 0. Consequently,{ (T1 + T )(x − x̄) ≤K u − ū + ε1, ∀(x, u) ∈ epiG1,

−T1(x − x̄) ≤K v − v̄ + ε2, ∀(x, v) ∈ epiG2,

which yields that T + T1 ∈ ∂s
ε1G1(x̄, ū) and −T1 ∈ ∂s

ε2G2(x̄, v̄), hence we obtain

∂ε(G1 + G2)(x̄, ū + v̄) =
⋃

ε1, ε2∈K

ε1+ε2=ε

∂ε1G1(x̄, ū) + ∂ε2G2(x̄, v̄).

So, we obtain the desired result. The proof is complete.
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The following theorem gives us the sum rule for two set-valued mappings under the connectedness
assumption.
Theorem 3.3. Let G1, G2 : X ⇒ Y be two set-valued mappings. Assume that the following condition
holds.

(MR)

 (Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, G1 and G2 are K-convex,
G1 is connected at some point x0 ∈ domG1 ∩ domG2.

Then, for any (x̄, ū) ∈ grG1, (x̄, v̄) ∈ grG2

∂s
ε(G1 + G2)(x̄, ū + v̄) =

⋃
ε1, ε2∈K

ε1+ε2=ε

∂s
ε1G1(x̄, ū) + ∂s

ε2G2(x̄, v̄), ∀ε ∈ K.

Proof. At first, we prove that int(epiG1) ̸= ∅. Since G1 is connected at x0, there exists some neigh-
borhood U0 of x0 and a mapping h : X → Y continuous at x0 such that h(x) ∈ G1(x) for all x ∈ U0.
Let y0 ∈ h(x0) + intK, i.e. h(x0) ∈ y0 − intK ⊂ y0 − K which yields that y0 − K is a neighborhood
of h(x0) and hence it follows from the continuity of the mapping h at x0 that h−1(y0 − K) is a
neighborhood of x0. By putting U = U0 ∩ h−1(y0 − K) which is a neighborhood of x0, we get that
y0 ∈ G1(x) + K for any x ∈ U . On other hand, as y0 − h(x0) ∈ intK, there exists a neighbourhood
V of 0Y such that y0 − h(x0) + V ⊂ K. By using the fact that K + K = K, we obtain for any x ∈ U
and y ∈ y0 + y0 − h(x0) + V that

y ∈ G1(x) + y0 − h(x0) + V + K ⊂ G1(x) + K.

which yields that (x0, y0 + y0 − h(x0)) ∈ int (epiG1). Secondly, we prove that int(epiG1) ∩ epiG2 ̸= ∅.
We proceed by contradiction: Suppose that int(epiG1) ∩ epiG2 = ∅, then by separation theorem [5,
Theorem 1.1.3], there exist a nonzero (x∗, y∗, β) ∈ X∗ × Y ∗ × R such that

⟨x∗, x⟩ + ⟨y∗, y⟩ ≤ β ≤ ⟨x∗, x′⟩ + ⟨y∗, y′⟩, ∀(x, y) ∈ epiG1, ∀(x′, y′) ∈ epiG2 (3.7)

As x0 ∈ domG1 ∩ domG2, we claim that there exists z0 ∈ Y such that (x0, z0) ∈ epiG1 ∩ epiG2.
Indeed, let y1 ∈ G1(x0) and y2 ∈ G2(x0) and by taking z0 := sup(y1, y2), we obtain z0 ∈ G1(x0) + K
and z0 ∈ G2(x0) + K i.e. (x0, z0) ∈ epiG1 ∩ epiG2. Since (x0, z0 + u) ∈ epiG1 ∩ epiG2 for any u ∈ K,
hence by taking in relation (3.7) x = x′ = x0, y = z0 and y′ = z0 + u (resp. x = x′ = x0, y = z0 + u
and y′ = z0), we obtain ⟨y∗, u⟩ ≥ 0, for all u ∈ K (resp. ⟨y∗, u⟩ ≤ 0, for all u ∈ K), which yields that
y∗ = 0 since intK ̸= ∅. It follows from (3.7) that ⟨x∗, u⟩ ≤ 0 for all u ∈ (domG1 − domG2) and as
G1 is connected at x0 ∈ domG1 ∩ domG2, one can see easily that 0X ∈ int(domG1 − domG2) which
yields that x∗ = 0X∗ and this leads to a contradiction.

Now, we illustrate our man results with the help of the following example.
Example 3.1. By taking X = R, Y = R and K = R+, let us consider the following set-valued
mappings F, G : X ⇒ Y defined respectively, by

G1(x) =
{

[−
√

x,
√

x ], if x ≥ 0 ,

∅, otherwise .

G2(x) = {y ∈ R : |x| ≤ y ≤ |x| + 1}.

It is easy to check that G1 and G2 are R+-convex and connected at 0, hence the condition (MR) is
satisfied. so f

∂s
ε(G1 + G2)(0, 0) =

⋃
ε1, ε2∈K

ε1+ε2=ε

∂s
ε1G1(0, 0) + ∂s

ε2G2(0, 0), ∀ε ∈ K.
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Indeed, let ε, ε1, ε2 ∈ R+, we get easily that

∂s
ε1G1(0, 0) = {α ∈ R : αx ≤ y + ε1, ∀(x, y) ∈ grG1},

= {α ∈] − ∞; 0[: ε1 ≥ −1
4α

}

∂s
ε2G2(0, 0) = {α ∈ R : αx ≤ y + ε2, ∀(x, y) ∈ grG2},

= [−1; 1].

∂s
ε(G1 + G2)(0, 0) = {α ∈ R : αx ≤ y + ε, ∀(x, y) ∈ gr(G1 + G2)},

= {α ∈] − ∞; 1[: ε ≥ 1
4(1 − α)}.

On other hand, by taking ε1 = ε and ε2 = 0, we see easily that ∂s
ε(G1 + G2)(0, 0) ⊆ ∂s

ε1G1(0, 0) +
∂s

ε2G2(0, 0). Thus

∂s
ε(G1 + G2)(0, 0) ⊆

⋃
ε1, ε2∈K

ε1+ε2=ε

∂s
ε1G1(0, 0) + ∂s

ε2G2(0, 0), ∀ε ∈ K.

For the reverse inclusion, let α1 ∈ ∂s
ε1G1(0, 0) and α2 ∈ ∂s

ε2G2(0, 0) with ε1 + ε2 = ε.

α1 ∈ ∂s
ε1G1(0, 0) and α2 ∈ ∂s

ε2G2(0, 0) ⇒ α1 < 0, ε1 ≥ −1
4α1

, α2 ∈ [−1; 1],

⇒ α1 + α2 < 1, ε1 ≥ −1
4α1

,

⇒ α1 + α2 < 1, α1 + α2 − 1 ≤ −1
4ε1

,

⇒ α1 + α2 < 1, ε ≥ 1
4(1 − (α1 + α2)) , since ε ≥ ε1.

Therfore, we obtain the equality

∂s
ε(G1 + G2)(0, 0) =

⋃
ε1, ε2∈K

ε1+ε2=ε

∂s
ε1G1(0, 0) + ∂s

ε2G2(0, 0), ∀ε ∈ K.

3.2 Composition

In this subsection, we provide the approximate strong subdifferential calculus of the composition
of two set-valued mappings. In what follows, Z is a real locally convex topological vector space
equipped with a nonempty pointed convex cone Q. We shall work also with the following definitions:
for (x, z) ∈ X ×Z, (A, B) ∈ L(X, Y )×L(Z, Y ), we set (A, B)(x, z) := A(x)+B(z). Let F : X ⇒ Y ,
H : X ⇒ Z and G : Z ⇒ Y be three set-valued mappings.

The composed set-valued mapping G ◦ H : X ⇒ Y is defined by

(G ◦ H)(x) = G(H(x)) :=


⊔

z∈H(x)
G(z), if x ∈ domH,

∅, otherwise.

We have dom(G ◦ H) = H−1(domG) ∩ domH where H−1(domG) := {x ∈ X : H(x) ∩ domG ̸= ∅}.
For a nonempty subset S ⊆ X, the set-valued indicator mapping Rv

S : X ⇒ Y is defined by

Rv
S(x) :=

{
{0Y }, if x ∈ S,

∅, else.
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Definition 3.1. [8] Let G : Z ⇒ Y be a set-valued mapping and S ⊆ Z. G is said to be (Z+, K)-
nondecreasing over S, if for any (z1, z2) ∈ S × S satisfying z1 ≤Z+ z2 we have G(z2) ⊆ G(z1) + K.

In what follows, we will need the following definition

L+(Z, Y ) := {B ∈ L(Z, Y ) : B(Q) ⊆ K}.

Lemma 3.1. Let G : Z ⇒ Y be (Q, K)-nondecreasing set-valued mapping, (z̄, ȳ) ∈ grG and ε ∈ K.
Then

∂s
εG(z̄, ȳ) ⊆ L+(Z, Y ).

Proof. Let A ∈ ∂s
εG(z̄, ȳ), then

G(z) ⊆ ȳ + A(z − z̄) − ε + K, ∀z ∈ Z. (3.8)

Let w ∈ Z+ and by taking z = z̄ − w in (3.8), we obtain

G(z̄ − w) ⊆ ȳ − A(w) − ε + K. (3.9)

As G is (Z+, K)-nondecreasing, we have G(z̄) ⊆ G(z̄ − w) + K. Since ȳ ∈ G(z̄) and by using the fact
K + K = K, it follows from (3.9) that

A(w) + ε ∈ K, ∀w ∈ Z+.

Since Q is a cone, it follows that

A(w) + ε

n
∈ K, ∀w ∈ Z+, ∀n ∈ N∗,

which yields by letting n ↗ +∞ that A(Z+) ⊆ K.
Remark 3.2. It follows immediately from above lemma that if H is Q-convex, G is (Z+, K)-
nondecreasing and K-convex, then for any A ∈ ∂s

εG(z̄, ȳ), the mapping A ◦ H is K-convex.

Let us consider the following auxiliary set-valued mappings

F̃ : X × Z ⇒ Y

(x, z) 7→ F (x) + Rv
epiH(x, z)

G̃ : X × Z ⇒ Y

(x, z) 7→ G(z)

Note that domF̃ = (domF × Z) ∩ epiH, domG̃ = X × domG and grG̃ = X × grG. In addition
epiG̃ = X × epiG and epiF̃ = (epiH × Y ) ∩ φ−1(epiF ), where φ is a continuous function defined
from X × Z × Y into X × Y by φ(x, z, y) := (x, y) for all (x, z, y) ∈ X × Z × Y . It is easy to see that
if F and G are K-convex and H is Z+-convex, then F̃ and G̃ are K-convex. Now, we are going to
show that the study of the formula ∂s(F + G ◦ H) can be reduced to that for ∂s(F̃ + G̃). For this, we
need the following lemma, which studies the relationship between the subdifferentials of F̃ , G̃ and
the subdifferentials of F , H and G.
Lemma 3.2. Let x̄ ∈ domF ∩ dom(G ◦ H), ū ∈ F (x̄), z̄ ∈ H(x̄), v̄ ∈ G(z̄) and ε ∈ K, we have

(i) If G is (Z+, K)-nondecreasing, then

A ∈ ∂s
ε(F + G ◦ H)(x̄, ū + v̄) ⇐⇒ (A, 0) ∈ ∂s

ε(F̃ + G̃)((x̄, z̄), ū + v̄). (3.10)

(ii) ∂s
εG̃((x̄, z̄), v̄) = {0} × ∂s

εG(z̄, v̄).

(iii) If G is connected at z̄ ∈ H(x̄), then G̃ is connected at (x̄, z̄).
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Proof. (i) Let A ∈ ∂s
ε(F + G ◦ H)(x̄, ū + v̄), then we have

F (x) + (G ◦ H)(x) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀x ∈ X,

and so, we obtain

F (x) + Rv
epiH(x, z) + (G ◦ H)(x) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀(x, z) ∈ X × Z,

which imply that

F̃ (x, z) + (G ◦ H)(x) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀(x, z) ∈ epiH. (3.11)

As G is (Z+, K)-nondecreasing, then for any (x, z) ∈ epiH, we have G(z) ⊂ (G ◦ H)(x) + K and so
by relation (3.11), it follows that

F̃ (x, z) + G(z) − ū − v̄ − A(x − x̄) + ε ⊆ K + K ⊆ K,

hence we get
F̃ (x, z) + G̃(x, z) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀(x, z) ∈ X × Z,

which yields (A, 0) ∈ ∂s
ε(F̃ +G̃)((x̄, z̄), ū+v̄). Conversely, let us take any (A, 0) ∈ ∂s

ε(F̃ +G̃)((x̄, z̄), ū+
v̄), then

F̃ (x, z) + G̃(x, z) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀(x, z) ∈ X × Z,

i.e.
F (x) + RepiH(x, z) + G(z) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀(x, z) ∈ X × Z.

Therefore for all (x, z) ∈ epiH, we have

F (x) + G(z) − ū − v̄ − A(x − x̄) + ε ⊆ K,

which implies that for all x ∈ X

F (x) +
⋃

z∈H(x)
G(z) − ū − v̄ − A(x − x̄) + ε ⊆ K,

i.e.
F (x) + (G ◦ H)(x) − ū − v̄ − A(x − x̄) + ε ⊆ K, ∀x ∈ X.

Finally, A ∈ ∂s
ε(F + G ◦ H)(x̄, ū + v̄).

(ii) Let (A, B) ∈ ∂s
εG̃((x̄, z̄), ȳ), then for all ((x, z), y) ∈ grG̃ = X × grG.

A(x − x̄) + B(z − z̄) ≤K y − ȳ + ε. (3.12)

By taking z = z̄ and y = ȳ in (3.12), it follows that for all x ∈ X and n ∈ N∗

A(x) ≤K
1
n

(A(x̄) + ε).

Since K is closed and pointed, we get A = 0, consequently ∂s
εG̃((x̄, z̄), ȳ) ⊆ {0} × ∂s

εG(z̄, ȳ). For the
reverse inclusion, let B ∈ ∂s

εG(z̄, ȳ), i.e.

B(z − z̄) ≤K y − ȳ + ε, ∀(z, y) ∈ grG.

As grG̃ = X × grG, we deduce that {0} × ∂s
εG(z̄, ȳ) ⊆ ∂s

εG̃((x̄, z̄), ȳ).
(iii) As G is connected at z̄ ∈ H(x̄), there exists a neighborhood V of z̄ and a mapping g : Z → Y
such that g(z) ∈ G(z) for all z ∈ V and g is continuous at z̄. Define the following function

g̃ : X × Z → Y

(x, z) 7→ g(z)

It is clear that g̃ is continuous at (x̄, z̄) and g̃(x, z) ∈ G̃(x, v) for all (x, z) ∈ X × V . Hence G̃ is
connected at (x̄, z̄).
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Now, we are ready to state our main results in this subsection.
Theorem 3.4. Let F : X ⇒ Y , H : X ⇒ Z and G : Z ⇒ Y be three set-valued mappings,
(x̄, ū) ∈ grF , (x̄, z̄) ∈ grH and (z̄, v̄) ∈ grG. Suppose also that the following condition holds.

(MR)1


(Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, (Z, Q) is a Hausdorff locally convex space,
F , G are K-convex and H is Z+-convex ,
G is (Q, K)-nondecreasing,
∃a ∈ domF ∩ domH such that G is connected at some point b ∈ H(a).

Then,

∂s
ε(F + G ◦ H)(x̄, ū + v̄) =

⋃
ε1, ε2∈K

ε1+ε2=ε

{∂s
ε1(F + A ◦ H)(x̄, ū + A(z̄)), A ∈ ∂s

ε2G(z̄, v̄)}, ∀ε ∈ K.

Proof. Let ε ∈ K and prove at first that

∂s
ε(F + G ◦ H)(x̄, ū + v̄) ⊇

⋃
ε1, ε2∈K

ε1+ε2=ε

{∂s
ε1(F + A ◦ H)(x̄, ū + A(z̄)), A ∈ ∂s

ε2G(z̄, v̄)}.

Let A ∈ ∂s
ε2G(z̄, v̄) and B ∈ ∂s

ε1(F + A ◦ H)(x̄, ū + A(z̄)) with ε1 + ε2 = ε, then

(F + A ◦ H)(x) − ū − A(z̄) − B(x − x̄) + ε2 ⊆ K, ∀x ∈ X,

which means that for any (x, u) ∈ grF and (x, z) ∈ grH

B(x − x̄) ≤K u − ū + A(z − z̄) + ε1. (3.13)

As A ∈ ∂s
ε2G(z̄, v̄), we have

G(z) − v̄ − A(z − z̄) + ε2 ⊆ K, ∀z ∈ Z,

which yields that ⋃
z∈H(x)

(G − A)(z) − v̄ + A(z̄) + ε2 ⊆ K, ∀x ∈ X,

i.e.
(G ◦ H)(x) − (A ◦ H)(x) − v̄ + A(z̄) + ε2 ⊆ K, ∀x ∈ X.

Therefore,
A(z − z̄) ≤K v − v̄ + ε2, ∀(x, z) ∈ grH, (z, v) ∈ grG. (3.14)

From the inequalities (3.13) and (3.14), we get

B(x − x̄) ≤K u + v − ū − v̄ + ε, ∀(x, u + v) ∈ gr(F + G ◦ H),

i.e. B ∈ ∂s
ε(F +G◦H)(x̄, ū+ v̄). For the reverse inclusion, let us take any B ∈ ∂s

ε(F +G◦H)(x̄, ū+ v̄).
According to Lemma 3.2 (i), we have

(B, 0) ∈ ∂s
ε(F̃ + G̃)((x̄, z̄), ū + v̄). (3.15)

Under the condition (MR1) and by virtue of Lemma 3.2 (iii), the mappings F̃ and G̃ satisfy together
all assumptions of Theorem 3.3, hence we obtain

∂s
ε(F̃ + G̃)((x̄, z̄), ū + v̄) =

⋃
ε1, ε2∈K

ε1+ε2=ε

∂s
ε1F̃ ((x̄, z̄), ū) + ∂s

ε2G̃((x̄, z̄), v̄).

Then, there exists ε1, ε2 ∈ K with ε1 + ε2 = ε, and (T, A) ∈ ∂s
ε2G̃((x̄, z̄), v̄) such that

(B − T, −A) ∈ ∂s
ε2F̃ ((x̄, z̄), ū).
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By virtue of Lemma 3.2 (ii), we obtain that T = 0 and A ∈ ∂s
ε2G(z̄, v̄). Now, let us show that

B ∈ ∂s
ε1(F + A ◦ H)(x̄, ū + A(z̄)). As (B, −A) ∈ ∂s

ε1F̃ ((x̄, z̄), ū), we have for all (x, z) ∈ X × Z

F (x) + Rv
epiH(x, z) − ū − B(x − x̄) + A(z − z̄) + ε1 ⊆ K,

which implies that
F (x) − ū − B(x − x̄) + A(z − z̄) + ε1 ⊆ K, ∀(x, z) ∈ epiH.

Hence for all x ∈ X, we have
F (x) +

⋃
z∈H(x)

A(z) − (ū + A(z̄)) − B(x − x̄) + ε1 ⊆ K,

i.e.
(F + A ◦ H)(x) − (ū + A(z̄)) − B(x − x̄) + ε1 ⊆ K.

Therefore, B ∈ ∂s
ε1(F + A ◦ H)(x̄, ū + A(z̄)).

Corollary 3.1. Let H : X ⇒ Z and G : Z ⇒ Y be two set-valued mappings, z̄ ∈ H(x̄) and
ȳ ∈ G(z̄). Suppose that the following condition holds

(MR)2


(Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, (Z, Q) is a Hausdorff locally convex space,
G is K-convex and H is Z+-convex ,
G is (Q, K)-nondecreasing,

G is connected at some point of ImH.

Then,
∂s

ε(G ◦ H)(x̄, ȳ) =
⋃

ε1, ε2∈K

ε1+ε2=ε

{∂s
ε1(A ◦ H)(x̄, A(z̄)), A ∈ ∂s

ε2G(z̄, ȳ)}, ∀ε ∈ K.

Consider now the case of composition with a linear operator. Let A : X → Z be a linear operator
and G : Z ⇒ Y be a K-convex set-valued mapping. By putting Q = {0Z}, the function G is
obviously (Q, K)-nondecreasing and A is Q-convex. So applying Corollary 3.1, one gets the following
result.
Corollary 3.2. Let x̄ ∈ X and ȳ ∈ G(A(x̄)). Assume that the following condition holds

(MR)3


(Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, (Z, Q) is a Hausdorff locally convex topological vector space,
G is K-convex,
G is connected at some point of ImA.

Then,

∂s
ε(G ◦ A)(x̄, ȳ) =

⋃
η∈K

∂s
ε−ηG(A(x̄), ȳ) ◦ A, ∀ε ∈ K.

Proof. It follows from Corollary 3.1 that

∂s
ε(G ◦ A)(x̄, ȳ) =

⋃
ε1, ε2∈K

ε1+ε2=ε

{∂s
ε1(B ◦ A)(x̄, A(x̄)), B ∈ ∂s

ε2G(z̄, ȳ)}. (3.16)

Moveover, it follows from the definition of the approximate strong subdifferential and the fact K
is closed and pointed that ∂s

ε1(B ◦ A)(x̄, A(x̄)) = {B ◦ A}, hence by (3.17), we get

∂s
ε(G ◦ A)(x̄, ȳ) =

⋃
ε1, ε2∈K

ε1+ε2=ε

{B ◦ A : B ∈ ∂s
ε2G(A(x̄), ȳ)},

=
⋃

η∈K

∂s
ε−ηG(A(x̄), ȳ) ◦ A.



3 Strong subdifferential calculus rules 50

Corollary 3.3. Under the assumptions of Theorem 3.4, if we assume that F or H is connected at
some point of domF ∩ domH, then

∂s
ε(F + G ◦ H)(x̄, ū + v̄) =

⋃
ε1, ε2,ε3∈K

ε1+ε2+ε3=ε

{∂s
ε1F (x̄, ū) + ∂s

ε2(A ◦ H)(x̄, A(z̄)), A ∈ ∂s
ε3G(z̄, v̄)}., ∀ε ∈ K.

Proof. According to Theorem 3.4, we have

∂s
ε(F + G ◦ H)(x̄, ū + v̄) =

⋃
ε1, ε2∈K

ε1+ε2=ε

{∂s
ε1(F + A ◦ H)(x̄, ū + A(z̄)), A ∈ ∂s

ε2G(z̄, v̄)}.

Let us note that A ◦ H is K-convex since A ∈ L+(Z, Y ). As F or H is connected at some point of
domF ∩domH, we can see easily that F or A◦H is connected at some point of domF ∩dom(A◦H) =
domF ∩ domH. Hence from Theorem 3.3 we have

∂s
ε(F + G ◦ H)(x̄, ū + v̄) =

⋃
ε1, ε2∈K

ε1+ε2=ε

{
⋃

ε3, ε4∈K

ε3+ε4=ε1

{∂s
ε3F (x̄, ū) + ∂s

ε4(A ◦ H)(x̄, A(z̄))}, A ∈ ∂s
ε2G(z̄, v̄)}.

=
⋃

ε1, ε2,ε3∈K

ε1+ε2+ε3=ε

{∂s
ε1F (x̄, ū) + ∂s

ε2(A ◦ H)(x̄, A(z̄)), A ∈ ∂s
ε3G(z̄, v̄)}.

The following corollary is a result obtained in [1].
Corollary 3.4. Let f : X → Y ∪ {+∞Y }, h : X → Z ∪ {+∞Z} and g : Z → Y ∪ {+∞Y } be
three set-valued mappings, x̄ ∈ domF ∩domh such that h(x̄) ∈ domg. Suppose also that the following
condition holds.

(MR)4


(Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, (Z, Q) is a Hausdorff locally convex topological vector space,
f , g are K-convex and h is Q-convex ,
g is (Q, K)-nondecreasing,
g is continuous at some point of h(domf ∩ domh).

Then,
∂s(f + g ◦ h)(x̄) =

⋃
A∈∂sg(z̄)

∂s(f + A ◦ h)(x̄).

Proof. Let us consider the following set-valued mappings

Ff (x) =
{

{f(x)}, if x ∈ domf,

∅, otherwise,
, Hh(x) =

{
{h(x)}, if x ∈ domh,

∅, otherwise.

Gg(x) =
{

{g(x)}, if x ∈ domg,

∅, otherwise.

It is easy to check that if g is continuous at some point of h(domf ∩ domh) then the set-valued
mapping g is connected at some point of Hh(domFf ∩ domHh) and also we check easily that the
set-valued mappings Ff , Hh and Gg satisfy all the assumptions of Theorem 3.4. Therefore, we get
for all ε ∈ K

∂s
ε(Ff +Gg◦Hh)(x̄, f(x̄)+g(h(x̄))) =

⋃
ε1, ε2∈K

ε1+ε2=ε

{∂s
ε1(Ff +A◦Hh)(x̄, f(x̄)+A(h(x̄))), A ∈ ∂s

ε2Gg(h(x̄), g(h(x̄)))}.
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4 Application to vector set optimization problem

This section is devoted to establish approximate optimality conditions for the following con-
strained vector set-valued optimization problem using approximate strong subdifferential and vector
ε-normal set

(PS)
{

Min F(x),
x ∈ S,

where F : X ⇒ Y is a set-valued mapping and S is a nonempty convex closed subset of X. The
indicator vector set-valued mapping Rv

S : X ⇒ Y is defined for the nonempty subset S ⊆ X by

Rv
S(x) :=

{
{0Y }, if x ∈ S,

∅, elsewhere.

It is obvious that Rv
S is proper. The problem (PS) becomes equivalent to the unconstrained vector

set-valued minimization problem

(P)
{

Min (F + Rv
S)(x),

x ∈ X,

in the following sense.
Kε, s(F, S, K) = Kε,s(F + Rv

S , X, K).
Lemma 4.1. (i) If S is convex and closed then Rv

S is K-convex and for all x̄ ∈ S,

∂s
εRv

S(x̄, 0Y ) = Nv
ε (x̄, S), ∀ε ∈ K,

where
Nv

ε (x̄, S) := {A ∈ L(X, Y ) : A(x − x̄) ≤K ε, ∀x ∈ S}
is the set of ε-normal vectors at x̄ ∈ S.
(ii) If int(S) ̸= ∅ then, Rv

S is connected on int(S).

Proof. (i) The epigraph of Rv
S is given by

epiRv
S = {(x, y) ∈ X × Y : y ∈ Rv

S(x) + K} = S × K,

and its K-convexity follows easily from the convexity of S and K.
(ii) Let us consider the single following mapping h : X −→ Y defined by h(x) := 0Y for all x ∈ X.
Since 0Y ∈ Rv

S(x), for any x ∈ S, it follows that h(x) ∈ Rv
S(x), for any x ∈ int(S), which ensures

that Rv
S is connected on int(S).

We are now ready to establish optimality conditions for problem (PS).
Theorem 4.1. Let F : X ⇒ Y be a set-valued mapping, S be a nonempty convex closed subset of
X, (x̄, ȳ) ∈ grF with x̄ ∈ S and ε ∈ K. If the following qualification condition holds

(MR)5

 (Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, F is K-convex,
domF ∩ int(S) ̸= ∅ or F is connected at some point of domF ∩ S.

Then (x̄, ȳ) ∈ Kε, s(F, S, K) if and only if, there exist ε1, ε2 ∈ K with ε1 + ε2 = ε and A ∈ ∂s
ε1F (x̄, ȳ)

such that −A ∈ Nv
ε2(x̄, S).

Proof. Since the problem (PS) is equivalent to the unconstrained set-valued minimization problem
(P), we have (x̄, ȳ) ∈ Kε, s(F, S, K) for (PS) if and only if

0 ∈ ∂s
ε(F + Rv

S)(x̄, ȳ + 0Y ). (4.1)
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The conditions (MR)5 and Lemma 4.1, show together that the mappings F and Rv
S satisfy all the

hypotheses of Theorem 3.3. Hence, we get

0 ∈
⋃

ε1, ε2∈K

ε1+ε2=ε

∂s
ε1F (x̄, ȳ) + ∂s

ε2Rv
S(x̄, 0Y ),

i.e. there exist ε1, ε2 ∈ K with ε1 + ε2 = ε and A ∈ ∂s
ε1F (x̄, ȳ) such that −A ∈ ∂s

ε2Rv
S(x̄, 0Y ) =

Nv
ε2(x̄, S).

Example 4.1. Let us consider the following constrained vector set-valued optimization problem

(P)
{

Min F(x),
x ∈ [0, 1],

where F : R ⇒ R2 is defined by

F (x) := {(a, b) ∈ R2 : a ≥ |x|, b ≥ x2}.

It is easy to see that F satisfies the condition (MR)5 of Theorem 4.1, and for any (η1, η2) ∈ R2
+

∂s
(η1,η2)F (0, (0, 0)) = {(µ, ν) ∈ R2 : −1 ≤ µ ≤ 1, −2√

η2 ≤ ν ≤ 2√
η2}.

By taking ε = (1, 1), ε1 = (1
2 , 1

2) and ε2 = (1
2 , 1

2), we have

Nv
ε2(0, [0, 1]) = {(α, β) ∈ R2 : α ≤ 1

2 , β ≤ 1
2}.

Obviously, (0, 0) ∈ ∂s
ε1F (0, (0, 0)), (0, 0) ∈ −Nv

ε2(0, [0, 1]) and ε1 + ε2 = ε. Hence, (0, 0) is a strong
(1, 1)-minimiser solution for (P[0,1]).

Let us consider the following general convex set-valued mathematical programming
problem

(R)

 Minimize F(x),
H(x) ∩ −Q ̸= ∅,
x ∈ C.

where F : X ⇒ Y and H : X ⇒ Z are two set-valued mappings, Z is a real locally convex
topological vector space, Q is a closed convex pointed cone with nonempty topological interior and
C be a nonempty closed convex set of X. For establishing the optimality conditions of this problem,
we will need the following lemma
Lemma 4.2. (i) If Z is a real locally convex topological vector space and Q ⊆ Z be a closed convex
cone, then the strong subdifferential of the indicator set-valued mapping Rv

−Q : Z ⇒ Y is given by

∂s
εRv

−Q(z̄, 0Y ) = {A ∈ L+(Z, Y ) : A(z̄) ∈ [−ε, 0Y ]}, ∀ε ∈ K.

(ii) The indicator set-valued mapping Rv
−Q is (Q, K)-nondecreasing on Z.

Theorem 4.2. Let F : X ⇒ Y and H : X ⇒ Z be two set-valued mappings, (x̄, ȳ) ∈ grF with
x̄ ∈ C and z̄ ∈ H(x̄) ∩ (−Q) ̸= ∅. If the following condition holds

(MR)6


(Y, K) is a normal order complete lattice Hausdorff locally convex topological
vector space, (Z, Q) is a Hausdorff locally convex topological vector space,
F is K-convex and H is Q-convex,
int(−Q) ∩ H(C ∩ domF ∩ domH) ̸= ∅.

Then (x̄, ȳ) is a strong ε-minimiser solution of problem (R), if and only if, there exist ε1, ε2 ∈ K with
ε1 + ε2 = ε and A ∈ L+(Z, Y ) such that

(a) A(z̄) ∈ [−ε2, 0Y ].
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(b) 0 ∈ ∂s
ε1(F + A ◦ H + Rv

C)(x̄, ȳ + A(z̄)).

Proof. The feasible set associated to problem (R) is given by S = {x ∈ X : H(x) ∩ −Q ̸= ∅} ∩ C,
and it is easy to check that Rv

S = Rv
C + Rv

−Q ◦ H. Hence the problem (R) becomes equivalent to the
unconstrained set-valued minimization problem{ Minimize(F + Rv

C + Rv
−Q ◦ H)(x),

x ∈ X.

Thus, (x̄, ȳ) is a strong ε-minimiser solution of problem (Q), if and only if,
0 ∈ ∂s

ε(F + Rv
C + Rv

−Q ◦ H)(x̄, ȳ).

Let us observe that
epi(F + Rv

C) = epiF ∩ (C × Y ),
which assert that the convexity of the set-valued mapping F + Rv

C follows from the convexity of the
epigraph of F and the convexity of the subset C. Also, let us note that the conditions (x̄, ȳ) ∈ grF
with x̄ ∈ C and z̄ ∈ H(x̄) ∩ (−Q) ̸= ∅ may be written equivalently as (x̄, ȳ) ∈ gr(F + Rv

C),
(x̄, z̄) ∈ grH and (z̄, 0Y ) ∈ grRv

−Q. According to Lemma 4.1 and Lemma 4.2, the set-valued mappings
F + Rv

C , H, and Rv
−Q satisfy together all the assumptions of Theorem 3.4 and thus we obtain

that (x̄, ȳ) is a strong ε-minimiser, if and only if, there exist ε1, ε2 ∈ K with ε1 + ε2 = ε and
A ∈ ∂s

ε2Rv
−Q(z̄, 0Y ) = {A ∈ L+(Z, Y ) : A(z̄) ∈ [−ε2, 0Y ]} such that

0 ∈ ∂s
ε1(F + Rv

C + A ◦ H)(x̄, ȳ + A(z̄)).
The proof of theorem is complete.
Corollary 4.1. Under the assumptions of Theorem 4.2, we assume, in addition, that F is connected
at some point of C and H is connected at some point of C. Then (x̄, ȳ) is a strong minimiser of
problem (R) if and only if, there exist ε1, ε2, ε3, ε4 ∈ K with ε1 + ε2 + ε3 + ε4 = ε, A ∈ L+(Z, Y ),
B ∈ ∂s

ε1F (x̄, ȳ) and T ∈ ∂s
ε3(A ◦ H)(x̄, 0Y ) such that

(a) A(z̄) ∈ [−ε2, 0Y ].
(b) −T − B ∈ Nv

ε4(x̄, C).

Proof. According to Theorem 4.2, we have (x̄, ȳ) is a strong ε-minimiser of problem (R) if and only
if, there exist η1, η2 ∈ K with η1 + η2 = η and A ∈ L+(Z, Y ) such that A(z̄) ∈ [−η2, 0Y ] and

0 ∈ ∂s
η1(F + A ◦ H + Rv

C)(x̄, ȳ + A(z̄)).

The fact that A ∈ L+(Z, Y ) yields that A ◦ H is K-convex. As H is connected at some point of C, it
is easy to check that A◦H is connected at some point of C. The convexity of the set-valued mapping
A ◦ H + Rv

C follows from the convexity of the epigraph of A ◦ H and the convexity of the subset C.
The set-valued mappings F and A ◦ H + Rv

C satisfy together all the assumptions of Theorem 3.3 and
hence we obtain

0 ∈ ∂s
η1(F + A ◦ H + Rv

C)(x̄, ȳ + A(z̄)) =
⋃

η3, η4∈K

η3+η4=η1

∂s
η3F (x̄, ȳ) + ∂s

η4(A ◦ H + Rv
C)(x̄, A(z̄)).

On other hand, it is clearthat the set-valued mappings A◦H and Rv
C satisfy together all the hypothesis

of Theorem 3.3 and hence we get

0 ∈ ∂s
η1(F+A◦H+Rv

C)(x̄, ȳ+A(z̄)) =
⋃

η3, η4∈K

η3+η4=η1

{
∂s

η3F (x̄, ȳ)+
⋃

η5, η6∈K

η5+η6=η4

{∂s
η5(A◦H)(x̄, A(z̄))+∂s

η6Rv
C(x̄, 0Y )}

}
.

i.e., η3, η4, η5, η6 ∈ K with η3 + η4 = η1, η5 + η6 = η4 and B ∈ ∂s
η3F (x̄, ȳ) and T ∈ ∂s

η5(A ◦ H)(x̄, 0Y )
such that −T − B ∈ ∂s

η6Rv
C(x̄, 0Y ) = Nv

η6(x̄, C). By putting, ε1 = η3, ε2 = η2, ε3 = η5 and ε4 = η6,
we get ε1 + ε2 + ε3 + ε4 = ε, which completes the proof of theorem.
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Tab. 1: Paper Notation Summary
Symbol Meaning

X, Y Topological vector spaces
K ⊂ X Closed, convex cone (used to define an order)
x ≤K y Ordering relation: y − x ∈ K
int(A) Interior of the set A

dom(G) Domain of the set-valued mapping F , i.e., {x ∈ X : G(x) ̸= ∅}
gph(G) Graph of the set-valued mapping F , i.e., {(x, y) | y ∈ G(x)}
epiK G The epigraph of the set-valued mapping

∂sF (x̄, ȳ) Strong subdifferential of the set valued mapping F at (x̄, ȳ)
∂s

εF (x̄, ȳ) Approximate Strong subdifferential of the set valued mapping F
at (x̄, ȳ)

NC(x) Normal cone to the set C at point x
∂sf(x) Strong Subdifferential of a vector convex function f at point x
dom(F ) Domain of the set-valued mapping F

cl(A) Closure of the set A
co(A) Convex hull of the set A
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