# On a partial differential equation related to the diamond Bessel Klein-Gordon operator

Sudprathai Bupasiri and Krailikhit Latpala – GJM, Volume 8, Issue 1 (2023), 58-68.

- Post by: administration
- août 8, 2023
- Comments off

In this paper, we consider the equation \diamondsuit_{B,m} ^{k}u(x)=\sum_{r=0}^{t}c_{r}\diamondsuit_{B,m}^r \delta where \diamondsuit_{B,m}^{k} is the operator iterated k-times and is defined by \diamondsuit_{B,m}^{k}=\left( \left(\left(\sum_{i=1}^{p} B_{x_i}\right)^2+\frac{m^2}{2}\right)^2 - \left(\left( \sum_{j=p+1}^{p+q} B_{x_j}\right)^2 -\frac{m^2}{2} \right)^2\right )^k, where p+q=n, x=(x_{1},\ldots , x_{n})\in \mathbb{R}^{+}_n, B_{x_{i}}=\frac{\partial ^{2}}{\partial x_{i}^{2}}+ \frac{2v_{i}}{x_{i}}\frac{\partial }{\partial x_{i}}, v_{i}=2\alpha _{i}+1, \alpha _{i}>-\frac{1}{2}\;\;, x_{i}>0, i=1,2,\ldots,n, c_{r} is a constant, k is a nonnegative integer, $\delta$ is the Dirac-delta distribution, \diamondsuit_{B,m} ^{0}\delta =\delta and n is the dimension of \mathbb{R}^{+}_n. It is shown that, depending on the relationship between k and t, the solution to this equation can be ordinary functions, tempered distributions, or singular distributions.

#### Milestones:

Received: September 24, 2022

Accepted: March 04, 2023

Revised: March 25, 2023

Published online: August 08, 2023

#### Authors:

__Sudprathai Bupasiri and Krailikhit Latpala__

Sakon Nakhon Rajabhat University,

Sakon Nakhon 47000, Thailand.